【題目】已知橢圓 )的焦距為,點上.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)點上,點的軌跡為曲線,過原點作直線與曲線交于、兩點,點,證明: 為定值,并求出定值.

【答案】(1)(2)3

【解析】試題分析:)由題意知:c= ,根據(jù)橢圓定義可求得a,根據(jù)b2=a2-c2可得b;()分直線的斜率為0,不為0兩種情況進行討論:當(dāng)直線的斜率為0時直接按照向量數(shù)量積運算即可;當(dāng)直線的斜率不為0時,設(shè)直線的方程為: , , .聯(lián)立直線方程與橢圓方程消掉yx的一元二次方程,由韋達定理及向量數(shù)量積公式代入運算可得結(jié)論;

試題解析:

(Ⅰ)由已知得,解得, 橢圓的方程為.

(Ⅱ)由條件可得, 曲線的方程為.

當(dāng)直線的斜率不存在時,不妨設(shè) ,則 , ;

當(dāng)直線的斜率存在時,設(shè)其方程為,可設(shè)點, ,

, ,

把點代入曲線的方程 .

綜上可知, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1是定義在R上的二次函數(shù)f(x)的部分圖像,圖2是函數(shù)的部分圖像。

(Ⅰ) 分別求出函數(shù)的解析式;

(Ⅱ)如果函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三數(shù)學(xué)競賽初賽考試后,對部分考生的成績進行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.

(1)請補充完整頻率分布直方圖,并估計這組數(shù)據(jù)的平均數(shù)M;

(2)現(xiàn)根據(jù)初賽成績從第四組和第六組中任意選2人,記他們的成績分別為.若,則稱此二人為“黃金幫扶組”.試求選出的二人為“黃金幫扶組”的概率;

(3)以此樣本的頻率當(dāng)做概率,現(xiàn)隨機在這所有考生中選出3名學(xué)生,求成績不低于120分的人數(shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢敭a(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺風(fēng)造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成 , , , 五組,并作出如下頻率分布直方圖(圖1):

(Ⅰ)臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶居民捐款情況如右下表格,在圖2表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟損失超過4000元的人數(shù)為. 若每次抽取的結(jié)果是相互獨立的,求的分布列,期望和方差.

附:臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

隨機量變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中, 是坐標(biāo)原點,動圓經(jīng)過點,且與直線相切.

(1)求動圓圓心的軌跡方程;

(2)過的直線交曲線兩點,過作曲線的切線,直線交于點,求的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下列表:


喜愛打籃球

不喜愛打籃球

合計

男生


5


女生

10



合計



50

已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學(xué)生的概率為

1)請將上表補充完整(不用寫計算過程);

2)能否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌手機銷售商今年1,2,3月份的銷售量分別是1萬部,1.2萬部,1.3萬部,為估計以后每個月的銷售量,以這三個月的銷售為依據(jù),用一個函數(shù)模擬該品牌手機的銷售量y(單位:萬部)與月份x之間的關(guān)系,現(xiàn)從二次函數(shù) 或函數(shù) 中選用一個效果好的函數(shù)行模擬,如果4月份的銷售量為1.37萬件,則5月份的銷售量為__________萬件.

查看答案和解析>>

同步練習(xí)冊答案