【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求a,b的值;

2)如果是函數(shù)的兩個零點, 為函數(shù)的導(dǎo)數(shù),證明:

【答案】(1);(2)證明見解析.

【解析】試題分析:

(1)由曲線在點處的切線方程,可求出切線斜率,即為函數(shù)在x=1處的導(dǎo)數(shù),由此可求出,再求出,即得點,再將點切線方程為,即可求出.

(2)先求出,再由是函數(shù)的兩個零點這一條件,將轉(zhuǎn)為的數(shù)學(xué)表達(dá)式,再通過換元,得到了與一個變量的關(guān)系,最終將問題轉(zhuǎn)化為求函數(shù)的單調(diào)性與最值問題。

試題解析:

(1)由切線方程為,可知斜率, 而.所以,得,由此.

,所以, ,得.

(2)因為, ,所以

是函數(shù)的兩個零點 ,

,

故要證

只需證

,令則設(shè) 下面證

恒成立

單調(diào)遞減,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時,數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線C:y2=4x,過焦點F斜率大于零的直線l交拋物線于A、B兩點,且與其準(zhǔn)線交于點D.
(Ⅰ)若線段AB的長為5,求直線l的方程;
(Ⅱ)在C上是否存在點M,使得對任意直線l,直線MA,MD,MB的斜率始終成等差數(shù)列,若存在求點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設(shè)數(shù)列的前項和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題中

非零向量滿足,則的夾角為

0的夾角為銳角的充要條件;

必定是直角三角形;

④△ABC的外接圓的圓心為O,半徑為1,若,,則向量在向量方向上的投影為.

以上命題正確的是 __________ (注:把你認(rèn)為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項a1= ,an+1= ,n=1,2,…
(1)求證:{ ﹣1}是等比數(shù)列,并求出{an}的通項公式;
(2)證明:對任意的x>0,an ﹣x),n=1,2,…
(3)證明:n﹣ ≥a1+a2+…+an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 ,

1)求證:平面 平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點.
(1)證明:AC1∥平面BDE;
(2)證明:AC1⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

極坐標(biāo)系中, 為極點,半徑為2的圓的圓心坐標(biāo)為.

1)求圓的極坐標(biāo)方程;

2)設(shè)直角坐標(biāo)系的原點與極點重合, 軸非負(fù)關(guān)軸與極軸重合,直線的參數(shù)方程為為參數(shù)),由直線上的點向圓引切線,求切線長的最小值.

查看答案和解析>>

同步練習(xí)冊答案