【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 , .
(1)求證:平面 平面 ;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2) ;
【解析】試題分析:
(1)要證明平面⊥平面,由面面垂直的判定定理知,需在某個平面上找到某條直線垂直于另一個平面,通過觀察分析,平面內(nèi)直線平面.要證明平面,又轉(zhuǎn)化為線面垂直問題, ⊥平面∴⊥,菱形中, ⊥,又∴平面 .
(2)建立空間直角坐標系,分別求出平面平面DFC的法向量,再求出兩個法向量的夾角的余弦值,即可得二面角的余弦值.
試題解析:
(1)∵⊥平面∴⊥
在菱形中, ⊥
又∴平面
∵平面∴平面⊥平面
(2)連接、交于點,以為坐標原點,以為軸,以為 軸,如圖建立空間直角坐標系.
,同理
,,
設(shè)平面的法向量
,則
設(shè)平面DFC的法向量
,則
設(shè)二面角為,
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 對任意n∈N* , 點(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項a1和通項公式an;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn;
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求a,b的值;
(2)如果是函數(shù)的兩個零點, 為函數(shù)的導數(shù),證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下:
(Ⅰ)在4月份任取一天,估計西安市在該天不下雨的概率;
(Ⅱ)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實數(shù)a的范圍;
(2)若函數(shù)有兩個極值點 , 且存在 滿足 ,令函數(shù) ,試判斷 零點的個數(shù)并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中, , , ,點是邊的中點,將沿折起,使平面平面,連接, , ,得到如圖所示的幾何體.
(Ⅰ)求證: 平面.
(Ⅱ)若, 與其在平面內(nèi)的正投影所成角的正切值為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在的直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線的方程為x﹣2y﹣5=0.
(1)求直線BC的方程;
(2)求直線BC關(guān)于CM的對稱直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com