【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面 ,

1)求證:平面 平面

2)求二面角的余弦值.

【答案】1)證明見解析;(2 ;

【解析】試題分析:

1)要證明平面平面,由面面垂直的判定定理知,需在某個平面上找到某條直線垂直于另一個平面,通過觀察分析,平面內(nèi)直線平面.要證明平面,又轉(zhuǎn)化為線面垂直問題, ⊥平面,菱形中, ,又平面 .

2建立空間直角坐標系,分別求出平面平面DFC的法向量,再求出兩個法向量的夾角的余弦值,即可得二面角的余弦值.

試題解析:

1⊥平面

在菱形中,

平面

平面∴平面⊥平面

2)連接、交于點,以為坐標原點,以軸,以 軸,如圖建立空間直角坐標系.

,同理

,,

設(shè)平面的法向量

,則

設(shè)平面DFC的法向量

,則

設(shè)二面角

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 對任意n∈N* , 點(an , Sn)都在函數(shù) 的圖象上.
(1)求數(shù)列{an}的首項a1和通項公式an;
(2)若數(shù)列{bn}滿足 ,求數(shù)列{bn}的前n項和Tn
(3)已知數(shù)列{cn}滿足 .若對任意n∈N* , 存在 ,使得c1+c2+…+cn≤f(x)﹣a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設(shè)向量, ,其中的兩個內(nèi)角.

(1)若,求證: 為直角;

2)若,求證: 為銳角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處的切線方程為,求a,b的值;

2)如果是函數(shù)的兩個零點, 為函數(shù)的導數(shù),證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下:
(Ⅰ)在4月份任取一天,估計西安市在該天不下雨的概率;
(Ⅱ)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)若 ,且函數(shù) 在區(qū)間 上單調(diào)遞增,求實數(shù)a的范圍;

2)若函數(shù)有兩個極值點 , 且存在 滿足 ,令函數(shù) ,試判斷 零點的個數(shù)并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)A={﹣4,2a﹣1,a2},B={a﹣1,1﹣a,9},已知A∩B={9},求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形中, , ,點邊的中點,將沿折起,使平面平面,連接 , ,得到如圖所示的幾何體.

(Ⅰ)求證: 平面

(Ⅱ)若 與其在平面內(nèi)的正投影所成角的正切值為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在的直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線的方程為x﹣2y﹣5=0.
(1)求直線BC的方程;
(2)求直線BC關(guān)于CM的對稱直線方程.

查看答案和解析>>

同步練習冊答案