【題目】設(shè)Sn是數(shù)列{an}的前n項和,an>0,且 .
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,Tn=b1+b2+…+bn , 求證: .
【答案】
(1)解:∵ ,Sn﹣1= an﹣1(an﹣1+3),
∴an= [ +3an﹣( +3an﹣1)],
整理得: ﹣ =3(an+an﹣1),
又∵an>0,
∴an﹣an﹣1=3,
又∵a1= a1(a1+3),即a1=3或a1=0(舍),
∴數(shù)列{an}是首項、公差均為3的等差數(shù)列,
∴其通項公式an=3n
(2)證明:由(1)可知 = = ( ﹣ ),
∴Tn=b1+b2+…+bn
= ( ﹣ + ﹣ +…+ ﹣ )
= ( ﹣ )
<
【解析】(1)通過 與Sn﹣1= an﹣1(an﹣1+3)作差,進而可知數(shù)列{an}是首項、公差均為3的等差數(shù)列,計算即得結(jié)論;(2)通過(1)裂項可知bn= ( ﹣ ),進而并項相加即得結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的前n項和的相關(guān)知識可以得到問題的答案,需要掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系.
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線C: ﹣ =1(a>0,b>0)兩條漸近線l1 , l2與拋物線y2=﹣4x的準線1圍成區(qū)域Ω,對于區(qū)域Ω(包含邊界),對于區(qū)域Ω內(nèi)任意一點(x,y),若 的最大值小于0,則雙曲線C的離心率e的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形中, , , ,四邊形為矩形,平面平面, .
(1)求證: 平面;
(2)點在線段上運動,設(shè)平面與平面所成二面角的平面角為,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+1|+|x﹣3|
(1)求函數(shù)f(x)的最小值;
(2)若{x|f(x)≤t2﹣3t}∩{x|﹣2≤x≤0}≠.求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)常年生產(chǎn)一種出口產(chǎn)品,根據(jù)預(yù)測可知,進入21世紀以來,該產(chǎn)品的產(chǎn)量平穩(wěn)增長.記2009年為第1年,且前4年中,第x年與年產(chǎn)量f(x) 萬件之間的關(guān)系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三種函數(shù)模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取其中你認為最適合的數(shù)據(jù)求出相應(yīng)的解析式;
(2)因遭受某國對該產(chǎn)品進行反傾銷的影響,2015年的年產(chǎn)量比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,確定2015年的年產(chǎn)量.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)的定義域是,對任意
當時,.關(guān)于函數(shù)給出下列四個命題:
①函數(shù)是奇函數(shù);
②函數(shù)是周期函數(shù);
③函數(shù)的全部零點為;
④當時,函數(shù)的圖象與函數(shù)的圖象有且只有三個公共點.
其中真命題的個數(shù)為 .
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代秦九韶算法可計算多項式anxn+an﹣1xn﹣1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當x=1時,當多項式為x4+4x3+6x2+4x+1的值為( )
A.5
B.16
C.15
D.11
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com