【題目】雙曲線C: =1(a>0,b>0)兩條漸近線l1 , l2與拋物線y2=﹣4x的準(zhǔn)線1圍成區(qū)域Ω,對(duì)于區(qū)域Ω(包含邊界),對(duì)于區(qū)域Ω內(nèi)任意一點(diǎn)(x,y),若 的最大值小于0,則雙曲線C的離心率e的取值范圍為

【答案】(1,
【解析】解:雙曲線C: =1的漸近線方程為y=± x,
拋物線y2=﹣4x的準(zhǔn)線1:x=1,
漸近線l1 , l2與拋物線y2=﹣4x的準(zhǔn)線1圍成區(qū)域Ω,如圖,
= ﹣1的幾何意義是點(diǎn)(x,y)
與點(diǎn)P(﹣3,﹣1)的斜率與1的差,
求得A(1, ),B(1,﹣ ),
連接PA,可得斜率最大為 ,
由題意可得 ﹣1<0,
可得 <3,即3a>b,9a2>b2=c2﹣a2 ,
即c2<10a2 , 即有c< a.
可得1<e<
所以答案是:(1, ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別是a,b,c,已知c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)求 +a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了預(yù)防流感,某學(xué)校對(duì)教室用藥熏消毒法進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量毫克與時(shí)間小時(shí)成正比;藥物釋放完畢后,的函數(shù)關(guān)系式為為常數(shù),如圖所示.據(jù)圖中提供的信息,回答下列問題:

1寫出從藥物釋放開始,每立方米空氣中的含藥量毫克與時(shí)間小時(shí)之間的函數(shù)關(guān)系式;

2據(jù)測(cè)定,當(dāng)空氣中每立方米的含藥量降低到毫克以下時(shí),學(xué)生方可進(jìn)教室。那么藥物釋放開始,至少需要經(jīng)過多少小時(shí)后,學(xué)生才能回到教室?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高級(jí)中學(xué)在今年五一期間給校內(nèi)所有教室安裝了同一型號(hào)的空調(diào),關(guān)于這批空調(diào)的使用年限單位:年和所支出的維護(hù)費(fèi)用單位:千元廠家提供的統(tǒng)計(jì)資料如表:

x

2

4

5

6

8

y

30

40

60

50

70

xy之間是線性相關(guān)關(guān)系,請(qǐng)求出維護(hù)費(fèi)用y關(guān)于x的線性回歸直線方程;

若規(guī)定當(dāng)維護(hù)費(fèi)用y超過千元時(shí),該批空調(diào)必須報(bào)度,試根據(jù)的結(jié)論求該批空調(diào)使用年限的最大值結(jié)果取整數(shù)參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的多面體中, 平面 的中點(diǎn).

(1)求證: ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn),,圓C的方程為,點(diǎn)P為圓上的動(dòng)點(diǎn).

求過點(diǎn)A的圓C的切線方程.

的最大值及此時(shí)對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AC=BC=AB=2,AA1=3,D點(diǎn)是AB的中點(diǎn)

(1)求證:BC1∥平面CA1D

(2)求三棱錐B-A1DC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)賣場(chǎng)對(duì)市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取200名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如下:

(1)求頻率分布表中的值并補(bǔ)全頻率分布直方圖;

(2)利用頻率分布直方圖估計(jì)被抽查市民的平均年齡

(3)從年齡在, 的被抽查者中利用分層抽樣選取10人參加華為手機(jī)用戶體驗(yàn)問卷調(diào)查,再?gòu)倪@10人中選出2人,求這2人在不同的年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,an>0,且
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,Tn=b1+b2+…+bn , 求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案