已知f(2x-1)=x2,則f(x)=
 
考點:函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質及應用
分析:用換元法,設2x-1=t,求出f(t),即得f(x).
解答: 解:∵f(2x-1)=x2,
設2x-1=t,則x=
t+1
2
;
∴f(t)=(
t+1
2
)
2
=
t2
4
+
t
2
+
1
4

即f(x)=
x2
4
+
x
2
+
1
4

故答案為:
x2
4
+
x
2
+
1
4
點評:本題考查了求函數(shù)的解析式的問題,解題時應用換元法,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+1,求f(2x+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程:
x=1+tcosθ
y=tsinθ
(t為參數(shù)),曲線C的參數(shù)方程:
x=
2
cosα
y=sinα
(α為參數(shù)),且直線交曲線C于A,B兩點.
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,并求θ=
π
4
時,|AB|的長度;
(Ⅱ)已知點P:(1,0),求當直線傾斜角θ變化時,|PA|•|PB|的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}(n∈N+)}滿足a1=2,a3=6
(1)求該數(shù)列的公差d和通項公式an;
(2)設Sn為數(shù)列{an}的前n項和,若Sn≥2n+12,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)y=
2kx+1
kx2+4kx+3
的定義域為R,則實數(shù)k的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二次函數(shù)的圖象過點(0,1),對稱軸為x=2,最小值為-1,則它的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一正整數(shù)的數(shù)陣如圖所示(從上至下第1行是1,第2行是3、2,…),則數(shù)字2014是從上至下第
 
行中的從左至右第
 
個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:x-y+1=0,l2:x-y-3=0則兩平行直線l1,l2間的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我們把平面幾何里相似形的概念推廣到空間:如果兩個幾何體大小不一定相等,但形狀完全相同,就把它們叫做相似體.下面幾何形中一定屬于相似形的個數(shù)是
 

①兩個球體 、趦蓚長方體 、蹆蓚正四面體 、軆蓚正三棱柱 、輧蓚正四棱錐.

查看答案和解析>>

同步練習冊答案