已知數(shù)列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn為數(shù)列{bn}的前n項和,Tn為數(shù)列{Sn}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和Sn;
(Ⅲ)求證:Tn
n
2
-
1
3
考點:數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(Ⅰ)利用疊加法,求數(shù)列{an}的通項公式;
(Ⅱ)利用裂項法,求數(shù)列{bn}的前n項和Sn
(Ⅲ)利用放縮法,再結(jié)合等比數(shù)列的求和公式,即可證明.
解答: (Ⅰ)解:∵an=an-1+2n-1,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1               …(5分)
(Ⅱ)解:bn=
an-1+1
anan+1
=
1
2
1
2n-1
-
1
2n+1-1
),
∴Sn=
1
2
[(
1
2-1
-
1
22-1
)+(
1
22-1
-
1
23-1
)+…+(
1
2n-1
-
1
2n+1-1
)]=
1
2
(1-
1
2n+1-1
)=
2n-1
2n+1-1
 …(10分)
(Ⅲ)證明:∵Sn=
1
2
-
1
3•2k+2k-2
1
2
-
1
3
1
2k
,
∴Tn
n
2
-
1
3
1
2
+
1
22
+…+
1
2n
)=
n
2
-
1
3
(1-
1
2n
)>
n
2
-
1
3
.…(14分)
點評:本題考查數(shù)列與不等式的綜合,考查疊加法,裂項法、放縮法的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(1-x)+1,-1≤x<k
x3-3x+2,k≤x≤a
,若存在k使得函數(shù)f(x)的值域是[0,2],則實數(shù)a的取值范圍是( 。
A、[
3
,+∞)
B、[1,
3
]
C、(0,
3
]
D、{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,計算得
10
i=1
xi=80,
10
i=1
yi=20,
10
i=1
xiyi=184,
10
i=1
xi2=720.
(1)求家庭的月儲蓄對月收入的回歸方程;
(2)判斷月收入與月儲蓄之間是正相關(guān)還是負相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*
(1)設(shè)bn=
2n
an
,求數(shù)列{bn}的通項公式;
(2)設(shè)cn=
1
n(n+1)an+1
,數(shù)列{cn}的前n項和為Sn,不等式
1
4
m2-
1
4
m>Sn對一切n∈N*成立,求m得范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3≤0,x∈R},B={x2-2mx+m2-1≤0,x∈R,m∈R}
(1)若A∩B={x|0≤x≤2},求實數(shù)m的取值;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,已知cosA=
3
5
,sinB=
5
13
,求sinC值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點Q為直線x=-4上的動點,過點Q作直線l垂直于y軸,動點P在l上,且滿足OP⊥OQ(O為坐標原點),記動點P的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)A,B為曲線C上兩點,且直線AB與x軸不垂直,若線段AB中點的橫坐標為2,求證:線段AB的垂直平分線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐S-ABCD中,底面ABCD為矩形,SA⊥底面ABCD,M為SD的中點,且SA=AD=2AB.
(1)求證:AM⊥SC;
(2)求二面角S-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)tan(-α-π)
sin(-α-π)

(1)化簡f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊答案