【題目】如圖,已知為拋物線上一點(diǎn),斜率分別為,的直線PA,PB分別交拋物線于點(diǎn)A,B(不與點(diǎn)P重合).

1)證明:直線AB的斜率為定值;

2)若△ABP的內(nèi)切圓半徑為.

i)求△ABP的周長(zhǎng)(用k表示);

ii)求直線AB的方程.

【答案】1)證明見解析;(2)(i;(ii.

【解析】

1)首先設(shè)直線PA的方程為,與拋物線聯(lián)立,求得點(diǎn)的坐標(biāo),將,求得點(diǎn)的坐標(biāo),再求直線的斜率;

(2)(。├孟议L(zhǎng)公式,分別求三角形的三邊長(zhǎng),

(ⅱ)首先求點(diǎn)到直線的距離,再利用等面積公式轉(zhuǎn)化方程求,最后求直線的方程.

1)設(shè)直線PA的方程為,與拋物線聯(lián)立,

,

易知,

所以直線AB的斜率(定值).

2)由(1)得直線AB的方程為,

所以點(diǎn)P到直線AB的距離.

,,.

(。┣的周長(zhǎng)

(ⅱ)設(shè)的內(nèi)切圓半徑為r,則

,

,解得.

所以直線AB的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點(diǎn)分別為的橢圓過點(diǎn),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過坐標(biāo)原點(diǎn).

(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程。

(II)圓與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線交橢圓C于P,Q兩點(diǎn),若AB為圓的直徑,且直線的斜率大于1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立

(1)記20件產(chǎn)品中恰有2件不合格品的概率為,的最大值點(diǎn)

(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用

(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;

(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F1為橢圓E(a>b>0)的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等腰直角三角形,直線與橢圓E有且僅有一個(gè)交點(diǎn)M.

1)求橢圓E的方程;

2)設(shè)直線y軸交于P,過點(diǎn)P的直線l與橢圓E交于不同的兩點(diǎn)A,B,若λ|PM|2|PA|·|PB|,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】珠算之父程大位是我國(guó)明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首竹筒容米問題:家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A為曲線上的動(dòng)點(diǎn),點(diǎn)B在線段OA的延長(zhǎng)線上,且滿足,點(diǎn)B的軌跡為

(1)求,的極坐標(biāo)方程;

(2)設(shè)點(diǎn)C的極坐標(biāo)為(2,0),求△ABC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)、是兩個(gè)正整數(shù)(允許相等),、是兩個(gè)由若干個(gè)實(shí)數(shù)組成的集合,且,(允許),集合滿足:若、、,且,則或,或).定義一個(gè)集合.試求出的最小可能值(表示集合的元素個(gè)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上的偶函數(shù),上的奇函數(shù),且.

1)求的表達(dá)式;

2)判斷并證明的單調(diào)性;

3)若存在使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案