【題目】已知左、右焦點(diǎn)分別為的橢圓過(guò)點(diǎn),且橢圓C關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).

(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程。

(II)圓與橢圓C交于A,B兩點(diǎn),R為線段AB上任一點(diǎn),直線交橢圓C于P,Q兩點(diǎn),若AB為圓的直徑,且直線的斜率大于1,求的取值范圍.

【答案】(Ⅰ) ; (Ⅱ) .

【解析】

(Ⅰ)利用橢圓C過(guò)點(diǎn),∵橢圓C關(guān)于直線x=c對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn),推出a=2c,然后求解橢圓C的離心率,標(biāo)準(zhǔn)方程.

(Ⅱ)設(shè)A(),B(),利用中點(diǎn)坐標(biāo)公式以及平方差法求出AB的斜率,得到直線AB的方程,代入橢圓C的方程求出點(diǎn)的坐標(biāo),設(shè)F1R:y=k(x+1),聯(lián)立,設(shè)P(x3,y3),Q(x4,y4),利用韋達(dá)定理,結(jié)合,,化簡(jiǎn)|PF1||QF1|,通過(guò),求解|PF1||QF1|的取值范圍.

(Ⅰ)∵橢圓過(guò)點(diǎn),∴,①

∵橢圓關(guān)于直線對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn),∴

,∴,②

由①②得,

∴橢圓的離心率,標(biāo)準(zhǔn)方程為.

(Ⅱ)因?yàn)?/span>為圓的直徑,所以點(diǎn)為線段的中點(diǎn),

設(shè),,則,,又,

所以,則,故,則直線的方程為,即.代入橢圓的方程并整理得

,故直線的斜率.

設(shè),由,得,

設(shè),則有.

,,

所以=

因?yàn)?/span>,所以,

的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對(duì)兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為一等品;指標(biāo)在區(qū)間的為二等品,現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:

若從甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級(jí),利用分層抽樣的方法抽取5件,再?gòu)倪@5件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;

該廠所生產(chǎn)這種零件,若是一等品每件可售50元,若是二等品每件可售20甲種生產(chǎn)方式每生產(chǎn)一件零件無(wú)論是一等品還是二等品的成本為10元,乙種生產(chǎn)方式每生產(chǎn)一件零件無(wú)論是一等品還是二等品的成本為18將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體比較在甲、乙兩種不同生產(chǎn)方式下,哪種生產(chǎn)方式生產(chǎn)的零件所獲得的平均利潤(rùn)較高?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個(gè)醫(yī)療分隊(duì),平均分到甲、乙兩個(gè)村進(jìn)行義務(wù)巡診,其中每個(gè)分隊(duì)都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有

A. 72種 B. 36種 C. 24種 D. 18種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,為坐標(biāo)原點(diǎn),,且.

(1)求拋物線的方程;

(2)過(guò)焦點(diǎn),且斜率為1的直線與拋物線交于兩點(diǎn),線段的垂直平分線交拋物線兩點(diǎn),求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求曲線C和直線的直角坐標(biāo)系方程;

2)已知直線與曲線C相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校體育教研組研發(fā)了一項(xiàng)新的課外活動(dòng)項(xiàng)目,為了解該項(xiàng)目受歡迎程度,在某班男女中各隨機(jī)抽取20名學(xué)生進(jìn)行調(diào)研,統(tǒng)計(jì)得到如下列聯(lián)表:

附:參考公式及數(shù)據(jù)

1)在喜歡這項(xiàng)課外活動(dòng)項(xiàng)目的學(xué)生中任選1人,求選到男生的概率;

2)根據(jù)題目要求,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為喜歡該活動(dòng)項(xiàng)目與性別有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離

(1)求的方程;

(2)過(guò)的直線相交于兩點(diǎn),的垂直平分線相交于,兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為, ,離心率為,點(diǎn)在橢圓上, , ,過(guò)與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點(diǎn)為,在線段上是否存在點(diǎn),使得?若存在,求實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知為拋物線上一點(diǎn),斜率分別為,的直線PAPB分別交拋物線于點(diǎn)A,B(不與點(diǎn)P重合).

1)證明:直線AB的斜率為定值;

2)若△ABP的內(nèi)切圓半徑為.

i)求△ABP的周長(zhǎng)(用k表示);

ii)求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案