【題目】已知橢圓 )的左右焦點分別為 ,離心率為,點在橢圓上, ,過與坐標(biāo)軸不垂直的直線與橢圓交于, 兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析】(1)依據(jù)題設(shè)運用余弦定理及已知條件建立方程進行求解;(2)依據(jù)題設(shè)先建立直線的方程,再運用直線與橢圓的位置關(guān)系分析求解:

(Ⅰ)由 ,

由余弦定理得, ,

解得, , ,

所以橢圓的方程為. 

(Ⅱ)存在這樣的點符合題意.

設(shè) ,

,設(shè)直線的方程為

,

由韋達定理得,故,

又點在直線上, ,所以.

因為,所以,整理得,

所以存在實數(shù),且的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于95為正品,小于95為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標(biāo)

機床甲

8

12

40

32

8

機床乙

7

18

40

29

6

(1)試分別估計甲機床、乙機床生產(chǎn)的零件為正品的概率;

(2)甲機床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應(yīng)該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的短軸長為2,且函數(shù)的圖象與橢圓僅有兩個公共點,過原點的直線與橢圓交于兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)點為線段的中垂線與橢圓的一個公共點,求面積的最小值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉(zhuǎn)成.若為線段的中點,則在翻折過程中:

是定值;②點在某個球面上運動;

③存在某個位置,使;④存在某個位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017 年省內(nèi)某事業(yè)單位面向社會公開招騁工作人員,為保證公平競爭,報名者需要參加筆試和面試兩部分,且要求筆試成績必須大于或等于分的才有資格參加面試, 分以下(不含分)則被淘汰,現(xiàn)有名競騁者參加筆試,參加筆試的成績按區(qū)間分段,其頻率分布直方圖如圖所示(頻率分布直方圖有污損),但是知道參加面試的人數(shù)為,且筆試成績在的人數(shù)為.

(1)根據(jù)頻率分布直方圖,估算競騁者參加筆試的平均成績;

(2)若在面試過程中每人最多有次選題答題的機會,累計答對題或答錯題, 答對題者方可參加復(fù)賽,已知面試者甲答對每一個問題的概率都相同,并且相互之間沒有影響,若他連續(xù)三次答題中答對一次的概率為,求面試者甲答題個數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,定點(常數(shù))的直線與曲線相交于、兩點.

(1)若點的坐標(biāo)為,求證:

(2)若,以為直徑的圓的位置是否恒過一定點?若存在,求出這個定點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2016-2017學(xué)年遼寧省六校協(xié)作體高二下學(xué)期期初數(shù)學(xué)(理)】已知圓的圓心在坐標(biāo)原點,且與直線相切.

(1)求直線被圓所截得的弦的長;

(2)過點作兩條與圓相切的直線,切點分別為求直線的方程;

(3)若與直線垂直的直線與圓交于不同的兩點,若為鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點.

(1)證明:MN∥平面PAD;
(2)若PA與平面ABCD所成的角為45°,求四棱錐P﹣ABCD的體積V.

查看答案和解析>>

同步練習(xí)冊答案