【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.

【答案】
(1)解:由題意知本題是一個等可能事件的概率,

設2件都是一級品為事件A.

從10件產(chǎn)品中抽取2件,共有C102=45個基本事件,且都是等可能的

而事件A的結果有C82=28種,

則P(A)=


(2)解:設至少有一件二級品為事件B,

則B是兩個互斥事件:“抽取的2件產(chǎn)品中包含了一件一級品,

一件二級品(記為B1)”與“抽取的2件產(chǎn)品均為二級品(B2)”的和.

而P(B1)= ,P(B2)= ,

∴P(B)=P(B1+B2)=P(B1)+P(B2

=

答:2件都是一級品的概率為 ;至少有一件二級品的概率為


【解析】(1)本題是一個等可能事件的概率,從10件產(chǎn)品中抽取2件,共有C102個基本事件,而滿足條件的事件的結果有C82 , 根據(jù)等可能事件的概率公式得到結果.(2)至少有一件二級品包括抽取的2件產(chǎn)品中包含了一件一級品,一件二級品與抽取的2件產(chǎn)品均為二級品,這兩種情況是互斥的,根據(jù)互斥事件的概率公式和等可能事件的概率公式得到結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點與橢圓的一個焦點重合,直線與拋物線交于兩點,且,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調區(qū)間;

(2)若, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐中, ,底面是菱形,且, ,過點作直線, 為直線上一動點.

(1)求證: ;

(2)當二面角的大小為時,求的長;

(3)在(2)的條件下,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 )的左右焦點分別為, ,離心率為,點在橢圓上, ,過與坐標軸不垂直的直線與橢圓交于 兩點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若, 的中點為,在線段上是否存在點,使得?若存在,求實數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率.

(1)求橢圓的方程;

(2)點在橢圓上,若點與點關于原點對稱,連接并延長與橢圓的另一個交點為,連接,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式 ; 函數(shù) (其中 ).
(1)若函數(shù)g(θ)的最大值為4,求m的值.
(2)若記集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C1: ,橢圓C2以C1的長軸為短軸,且與C1

相同的離心率.

(1)求橢圓Q的方程;

(2)設0為坐標原點,點A,B分別在橢圓C1和C2上,,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

(1)求的軌跡

(2)過軌跡上任意一點作圓的切線,設直線的斜率分別是,試問在三個斜率都存在且不為0的條件下, 是否是定值,請說明理由,并加以證明.

查看答案和解析>>

同步練習冊答案