【題目】各項均為正數(shù)的數(shù)列{an}中,前n項和

(1)求數(shù)列{an}的通項公式;

(2)若恒成立,求k的取值范圍;

(3)是否存在正整數(shù)m,k,使得amam+5,ak成等比數(shù)列?若存在,求出mk的值,若不存在,請說明理由.

【答案】(1)an=2n-1;(2);(3)存在m=1,k=61滿足題意.

【解析】試題分析:

(1)由題中的遞推關(guān)系結(jié)合題意可得數(shù)列的通項公式為

(2)首先裂項求數(shù)列的前n項和,然后結(jié)合恒成立的條件可得k的取值范圍是;

(3)由題中的結(jié)論討論可得存在m=1,k=61滿足題意.

試題解析:

(1)∵,∴

兩式相減得,

整理得(an+an-1)(an-an-1-2)=0,

∵數(shù)列{an}的各項均為正數(shù),∴an-an-1=2,n≥2,

∴{an}是公差為2的等差數(shù)列,

a1=1,∴an=2n-1.

(2)由題意得

,

=

(3)∵an=2n-1.

假設存在正整數(shù)m,k,使得amam+5,ak成等比數(shù)列,即

即(2m+9)2=(2m-1)(2k-1),

∵(2m-1)≠0,∴

∵2k-1∈Z,∴2m-1為100的約數(shù),

∴2m-1=1,m=1,k=61.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(數(shù)學(文)卷·2017屆湖北省沙市中學高三上學期第七次雙周練第16題)埃及數(shù)學中有一個獨特現(xiàn)象:除用一個單獨的符號表示以外,其它分數(shù)都要寫成若干個單分數(shù)和的形式.例如可以這樣理解:假定有兩個面包,要平均分給5個人,如果每人,不夠,每人,余,再將這分成5份,每人得,這樣每人分得.形如的分數(shù)的分解: , , ,按此規(guī)律, =____________; = ____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , , 分別為的中點,點在線段上.

(Ⅰ)求證: 平面

(Ⅱ)如果直線與平面所成的角和直線與平面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市理論預測2010年到2014年人口總數(shù)與年份的關(guān)系如下表所示

年份2010+x(年)

0

1

2

3

4

人口數(shù)y(十萬)

5

7

8

11

19

(1)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

(2) 據(jù)此估計2015年該城市人口總數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)求的極大值與極小值;

(3)寫出利用導數(shù)方法求函數(shù)極值點的步驟.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在甲、乙兩個盒子中分別裝有標號為1,2,3,4的四個球,現(xiàn)從甲乙兩個盒子中各取出1個球,球的標號分別記做a,b,每個球被取出的可能性相等.

(1)求a+b能被3整除的概率;

(2)若|a-b|≤1則中獎,求中獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拖延癥總是表現(xiàn)在各種小事上,但日積月累,特別影響個人發(fā)展.某校的一個社會實踐調(diào)查小組,在對該校學生進行“是否有明顯拖延癥”的調(diào)查中,隨機發(fā)放了110份問卷.對收回的100份有效問卷進行統(tǒng)計,得到如下列聯(lián)表:

有明顯拖延癥

無明顯拖延癥

合計

35

25

60

30

10

40

合計

65

35

100

(Ⅰ)按女生是否有明顯拖延癥進行分層,已經(jīng)從40份女生問卷中抽取了8份問卷,現(xiàn)從這8份問卷中再隨機抽取3份,并記其中無明顯拖延癥的問卷的份數(shù)為,試求隨機變量的分布列和數(shù)學期望;

(Ⅱ)若在犯錯誤的概率不超過的前提下認為無明顯拖延癥與性別有關(guān),那么根據(jù)臨界值表,最精確的的值應為多少?請說明理由.

附:獨立性檢驗統(tǒng)計量,其中

獨立性檢驗臨界值表:

0.25

0.15

0.10

0.05

0.025

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,左頂點為.

(1)求橢圓的方程;

(2)已知為坐標原點, 是橢圓上的兩點,連接的直線平行軸于點,證明: 成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 過橢圓 ()的短軸端點, 分別是圓與橢圓上任意兩點,且線段長度的最大值為3.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作圓的一條切線交橢圓, 兩點,求的面積的最大值.

查看答案和解析>>

同步練習冊答案