f(n)=1+
1
2
+…+
1
n
,當n≥2,n∈N*時n+f(1)+f(2)+…+f(n-1)=nf(n),請用數(shù)學歸納法給予證明.
考點:數(shù)學歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:數(shù)學歸納法的一般步驟是,第一步驗證第一項是否成立,第二步假設(shè)n=k時候結(jié)論成立,去驗證n=k+1時候結(jié)論是否成立.若都成立即得證.
解答: 證明:1°、當n=2時,等式左邊=2+f(1)=2+1=3
等式右邊=2f(2)=2(1+
1
2
)=3,∴原式成立;…(4分)
2°、假設(shè)n=k(k≥2)成立,即k+f(1)+f(2)+…+f(k-1)=kf(k)…(6分)
則當n=k+1時,
等式左邊=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)
=k+f(1)+f(2)+…+f(k-1)+f(k)=kf(k)+f(k)+1…(10分)
=(k+1)f(k)+1=(k+1)[f(k)+
1
k+1
=(k+1)f(k+1)
即當n=k+1時,等式也成立.…(12分)
綜上1°,2°可得當n≥2,n∈N*時,n+f(1)+f(2)+…+f(n-1)=nf(n)均成立…(14分)
點評:數(shù)學歸納法的基本形式:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1°P(n0)成立(奠基);2°假設(shè)P(k)成立(k≥n0),可以推出P(k+1)成立(歸納),則P(n)對一切大于等于n0的自然數(shù)n都成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某次文藝晚會上共演出8個節(jié)目,其中2個歌曲,3個舞蹈,3個曲藝節(jié)目,求分別滿足下列條件的節(jié)目編排方法有多少種?
(1)一個歌曲節(jié)目開頭,另一個放在最后壓臺;
(2)2個歌曲節(jié)目互不相鄰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AD為圓O的直徑,直線BA與圓O相切于點A,直線OB與弦AC垂直并相交于點G,與弧AC相交于M,連接DC,AB=10,AC=12.
(1)求證:BA•DC=GC•AD;
(2)求OA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知BC為⊙O的直徑,點A、F在⊙O上,AD⊥BC,垂足為D,BF交AD于E,且AE=BE.
(1)求證:AB=AF;
(2)如果sin∠FBC=
3
5
,AB═4
5
,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,求DF•DB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(
1
tan
α
2
-tan
α
2
)•
1-cos2α
sin2α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)若f′(x0)=6,求
lim
t→0
f(x0-t)-f(x0)
3t
的值;
(2)若函數(shù)f(x)=(x2-x-1)e-x,求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了檢驗主修統(tǒng)計專業(yè)是否與性別有關(guān),某高!敖y(tǒng)計初步”課程的教師隨機調(diào)查了選該課的一些學生情況,具體數(shù)據(jù)如下表:
非統(tǒng)計專業(yè) 統(tǒng)計專業(yè)
 男生 14 10
 女生 6 20
(1)分別計算男生、女生主修統(tǒng)計專業(yè)的百分比,并求K2的值;
(2)能否在犯錯誤的概率不超過0.025的前提下認為主修統(tǒng)計專業(yè)與性別有關(guān)?
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)an是(1-
x
n的展開式中x項的系數(shù)(n=2,3,4,…),若bn=
an+1
(n+7)
a
 
n+2
,則bn的最大值是
 

查看答案和解析>>

同步練習冊答案