【題目】已知橢圓C: =1(a>b>0),離心率為 ,兩焦點分別為F1、F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值.
【答案】
(1)解:由題得: ,4a=8,所以a=2,
又b2=a2﹣c2,所以b=1即橢圓C的方程為
(2)解:由題意知,|m|≥1.
當m=1時,切線l的方程x=1,點A、B的坐標分別為 ,
此時 ; 當m=﹣1時,同理可得
當|m|>1時,設(shè)切線l的方程為y=k(x﹣m),(k≠0)
由
設(shè)A、B兩點的坐標分別為(x1,y1),(x2,y2),
則△=64k4m2﹣16(1+4k2)(4k2m2﹣4)=48k2>0
又由l與圓 .得
所以 = = 因為|m|≥1所以 ,
且當 時,|AB|=2,
由于當m=±1時, ,所以|AB|的最大值為2
【解析】(1)利用已知條件求出橢圓方程中的幾何量,即可求橢圓C的方程;(2)利用直線的斜率存在與不存在,分別與橢圓方程聯(lián)立,利用韋達定理,以及弦長公式表示弦長|AB|通過基本不等式求解弦長的最大值.
【考點精析】掌握橢圓的標準方程是解答本題的根本,需要知道橢圓標準方程焦點在x軸:,焦點在y軸:.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù),α∈[0,π)).以原點O為極點,以x軸正半軸為極軸,與直角坐標系xOy取相同的長度單位,建立極坐標系.設(shè)曲線C的極坐標方程為ρcos2θ=4sinθ. (Ⅰ)設(shè)M(x,y)為曲線C上任意一點,求x+y的取值范圍;
(Ⅱ)若直線l與曲線C交于兩點A,B,求|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+3|+|x﹣1|.
(1)解不等式f(x)>4;
(2)若x∈(﹣∞,﹣ ),不等式a+1<f(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果執(zhí)行如圖所示的程序框圖,輸入正整數(shù)N(N≥2)和實數(shù)a1 , a2 , …,an , 輸出A,B,則( )
A.A和B分別是a1 , a2 , …,an中最小的數(shù)和最大的數(shù)
B.A和B分別是a1 , a2 , …,an中最大的數(shù)和最小的數(shù)
C. 為a1 , a2 , …,an的算術(shù)平均數(shù)
D.A+B為a1 , a2 , …,an的和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義域為(﹣∞,0)∪(0,+∞),f(x)在(0,+∞)上的圖象如圖所示,則不等式f(x)f′(x)>0的解集是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的右焦點為( ,0),離心率為 .
(1)求橢圓C的標準方程;
(2)若動點P(x0 , y0)為橢圓C外一點,且點P到橢圓C的兩條切線相互垂直,求點P的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,由于函數(shù)f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的圖象部分數(shù)據(jù)已污損,現(xiàn)可以確認點C( ,0),其中A點是圖象在y軸左側(cè)第一個與x軸的交點,B點是圖象在y軸右側(cè)第一個最高點,則f(x)在下列區(qū)間中是單調(diào)的( )
A.(0, )
B.( , )
C.( ,2π)
D.( , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com