【題目】如圖,由于函數(shù)f(x)=sin(π﹣ωx)sin( +φ)﹣sin(ωx+ )sinφ(ω>0)的圖象部分數(shù)據(jù)已污損,現(xiàn)可以確認點C( ,0),其中A點是圖象在y軸左側第一個與x軸的交點,B點是圖象在y軸右側第一個最高點,則f(x)在下列區(qū)間中是單調的( )
A.(0, )
B.( , )
C.( ,2π)
D.( , )
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為 ,兩焦點分別為F1、F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,A1 , A2為橢圓 =1的長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1 , A2的三點,直線QA1 , QA2 , OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=( )
A.5
B.3+
C.9
D.14
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別是AB,BC的中點.將△AED,△DCF分別沿DE,DF折起,使A,C兩點重合于P.
(1)求證:平面PBD⊥平面BFDE;
(2)求二面角P﹣DE﹣F的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關系,現(xiàn)在社會上隨機詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認為:“性別與讀營養(yǎng)說明有關系”,并說明理由;
(2)把頻率當概率,若從社會上的男性市民中隨機抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望E(ξ).
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
參考公式和數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)F(x)= ,(a為實數(shù)).
(1)根據(jù)a的不同取值,討論函數(shù)y=f(x)的奇偶性,并說明理由;
(2)若對任意的x≥1,都有1≤f(x)≤3,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合Ma={f(x)|存在正實數(shù)a,使得定義域內任意x都有f(x+a)>f(x)}.
(1)若f(x)=2x﹣x2 , 試判斷f(x)是否為M1中的元素,并說明理由;
(2)若 ,且g(x)∈Ma , 求a的取值范圍;
(3)若 (k∈R),且h(x)∈M2 , 求h(x)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com