【題目】下列命題中 ①若loga3>logb3,則a>b;
②函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);
③設(shè)g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,則函數(shù)g(x)無零點(diǎn);
④函數(shù) 既是奇函數(shù)又是減函數(shù).
其中正確的命題有

【答案】②④
【解析】解:若loga3>logb3>0,則a<b,故①錯(cuò)誤; 函數(shù)f(x)=x2﹣2x+3的圖像開口朝上,且以直線x=1為對(duì)稱軸,
當(dāng)x=1時(shí),函數(shù)取最小值2,無最大值,故函數(shù)f(x)=x2﹣2x+3,x∈[0,+∞)的值域?yàn)閇2,+∞);
故②正確;
g(x)是定義在區(qū)間[a,b]上的連續(xù)函數(shù).若g(a)=g(b)>0,
則函數(shù)g(x)可能存在零點(diǎn);
故③錯(cuò)誤;
數(shù) 滿足h(﹣x)=﹣h(x),故h(x)為奇函數(shù),
又由 =﹣ex<0恒成立,故h(x)為減函數(shù)
故④正確;
所以答案是:②④.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若 ,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對(duì)任意 都有恒成立,求實(shí)數(shù) 的取值范圍;

(Ⅲ)設(shè)函數(shù) ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域?yàn)镽的奇函數(shù)f(x)= ,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)歷法推測(cè)遵循以測(cè)為輔、以算為主的原則.例如《周髀算經(jīng)》和《易經(jīng)》里對(duì)二十四節(jié)氣的晷影長(zhǎng)的記錄中,冬至和夏至的晷影長(zhǎng)是實(shí)測(cè)得到的,其他節(jié)氣的晷影長(zhǎng)則是按照等差數(shù)列的規(guī)律計(jì)算得出的.下表為《周髀算經(jīng)》對(duì)二十四節(jié)氣晷影長(zhǎng)的記錄,其中寸表示115寸分(1寸=10分).

節(jié)氣

冬至

小寒(大雪)

大寒(小雪)

立春(立冬)

雨水(霜降)

驚蟄(寒露)

春分(秋分)

晷影長(zhǎng)(寸)

135

75.5

節(jié)氣

清明(白露)

谷雨(處暑)

立夏(立秋)

小滿(大暑)

芒種(小暑)

夏至

晷影長(zhǎng)(寸)

16.0

已知《易知》中記錄的冬至晷影長(zhǎng)為130.0寸,夏至晷影長(zhǎng)為14.8寸,那么《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)應(yīng)為__________寸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬元)

8.2

8.6

10.0

11.3

11.9

支出y(萬元)

6.2

7.5

8.0

8.5

9.8


(1)根據(jù)上表可得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶年收入為15萬元的家庭年支出為多少?
(2)若從這5個(gè)家庭中隨機(jī)抽選2個(gè)家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個(gè)不超過10萬元,另一個(gè)超過11萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn的最大值及其相應(yīng)的n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案