分析 ①根據(jù)余弦函數(shù)的單調(diào)性列出不等式解出f(x)的單調(diào)區(qū)間.
②根據(jù)x的范圍求出2x+$\frac{π}{6}$的范圍,根據(jù)余弦函數(shù)的圖象和單調(diào)性得出f(x)的最值.
解答 解:①令-π+2kπ≤2x+$\frac{π}{6}$≤2kπ,解得-$\frac{7π}{12}$+kπ≤x≤-$\frac{π}{12}$+kπ,
令2kπ≤2x+$\frac{π}{6}$≤π+2kπ,解得-$\frac{π}{12}+kπ$≤x≤$\frac{5π}{12}+kπ$.
∴f(x)的增區(qū)間是[-$\frac{7π}{12}$+kπ,-$\frac{π}{12}$+kπ],減區(qū)間是[-$\frac{π}{12}+kπ$,$\frac{5π}{12}+kπ$],k∈Z.
②∵x∈[0,$\frac{π}{2}$],∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$].
∴當(dāng)2x+$\frac{π}{6}$=$\frac{π}{6}$時,f(x)取得最大值$\frac{1}{2}×\frac{\sqrt{3}}{2}+\frac{1}{4}$=$\frac{\sqrt{3}+1}{4}$,
當(dāng)2x+$\frac{π}{6}$=π時,f(x)取得最小值$\frac{1}{2}×(-1)$$+\frac{1}{4}$=-$\frac{1}{4}$.
∴f(x)的值域是[-$\frac{1}{4}$,$\frac{\sqrt{3}+1}{4}$].
點評 本題考查了余弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y={(\sqrt{x+1})^2}$ | B. | $y=\root{3}{x^3}+1$ | C. | $y=\frac{x^2}{x}+1$ | D. | $y=\sqrt{x^2}+1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外心 | B. | 內(nèi)心 | C. | 重心 | D. | 垂心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 0或1 | D. | 0或-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p:“?x0∈R,x02+x0+1<0”,則¬p:“?x∈R,x2+x+1≥0” | |
B. | 命題“若x2-4x+3=0,則x=3”的逆否命題是假命題 | |
C. | 命題“若m>0,則方程x2+x-m=0有實數(shù)根”的否定是“若m>0,則方程x2+x-m=0沒有實數(shù)根” | |
D. | 若p∧q為假命題,則p∨q為假命題 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com