分式方程
5
x-2
=
3
x
的解是(  )
A、x=3
B、x=-3
C、x=
3
4
D、x=-
3
4
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將分?jǐn)?shù)方程轉(zhuǎn)化為整式方程即可得到結(jié)論.
解答: 解:由分式方程可知,x≠0且x≠2,
則分式方程等價為3(x-2)=5x,
即2x=-6,解得x=-3,
故選:B
點(diǎn)評:本題主要考查分式方程的求解,將分式轉(zhuǎn)化為整式方程是解決此類問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公園現(xiàn)有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三個成人和2個兒童分乘這些船只(每船必須坐人),為安全起見,兒童必須由大人陪同方可乘船,他們分乘這些船只的方法有(  )
A、48B、36C、30D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|0≤x+2≤5},B={x|x<-1或x>4},則A∩B等于(  )
A、{x|x≤3或x>4}
B、{x|-1<x≤3}
C、{x|3≤x<4}
D、{x|-2≤x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c,d,e是五個不同的正整數(shù),其中有且只有一個是偶數(shù),若方程(x-a)(x-b)(x-c)(x-d)(x-e)=2010有大于a,b,c,d,e的整數(shù)解x,則a+b+c+d+e的末尾數(shù)字是( 。
A、2B、3C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不重合的平面α、β和不重合的直線m、n,給出下列命題:
①m∥n,n?α⇒m∥α;
②m∥n,n?α⇒m與α不相交;
③α∩β=m,n∥α,n∥β⇒n∥m;
④α∥β,m∥β,m?α⇒m∥α;
⑤m∥α,n∥β,m∥n⇒α∥β;
⑥m?α,n?β,α⊥β⇒m⊥n;
⑦m⊥α,n⊥β,α與β相交⇒m與n相交;
⑧m⊥n,n?β,m?β⇒m⊥β;
⑨α⊥β,a?α,b?β,b⊥a⇒b⊥α.
其中正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-4x+5,x∈[1,2],則該函數(shù)值域?yàn)椋ā 。?/div>
A、[1,+∞]
B、[1,5]
C、[1,2]
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|
x-1
x+1
<0},B={x||x-b|<a},若“a=1”是“A∩B≠∅”的充分條件,則b的取值范圍是(  )
A、-2≤b<0
B、0<b≤2
C、-3<b<-1
D、-1≤b<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,3,5,7,9,11},M={3,5,9},N={7,9},則集合{1,11}=( 。
A、M∪N
B、M∩N
C、∁U(M∪N)
D、∁U(M∩N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)是定義在(0,+∞)上的增函數(shù),f(xy)=f(x)+f(y)
(1)證明:f(
x
y
)=f(x)-f(y)
(2)已知f(3)=1且f(a)>f(a-1)+2,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案