【題目】如圖,雙曲線的右頂點為A,右焦點為F,點B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為21,則該雙曲線的離心率為

A.

B.

C.

D.

【答案】A

【解析】

由已知條件得出矩形的邊用雙曲線中的a,b,c表示,再根據(jù)兩個矩形相似,且兩個矩形的面積比,得出矩形的邊的比例關(guān)系式,從而得出關(guān)于a,c的齊次方程,得出關(guān)于離心率e的方程,得解.

由已知得,由矩形OFBD與矩形AEGF相似,得.

,則,則,因為矩形OFBD與矩形AEGF的面積之比為2:1,所以,得方程兩邊同時除以得,

解得(舍去,因為雙曲線的).

,則,則,

所以

方程兩邊同時除以得,,

解得,不合題意,舍去.

綜上,該雙曲線的離心率,

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車尾氣中含有一氧化碳,碳氫化合物等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣之中的污染物會出現(xiàn)遞增的現(xiàn)象,所以國家根據(jù)機動車使用和安全技術(shù)、排放檢驗狀況,對達到報廢標(biāo)準的機動車實施強制報廢,某環(huán)境組織為了解公眾對機動車強制報廢標(biāo)準的了解情況,隨機調(diào)查了人,所得數(shù)據(jù)制成如下列聯(lián)表:

1)若從這人中任選人,選到了解強制報廢標(biāo)準的人的概率為,問是否在犯錯的概率不超過5﹪的前提下認為“機動車強制報廢標(biāo)準是否了解與性別有關(guān)”?

2)該環(huán)保組織從相關(guān)部門獲得某型號汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號汽車的使用年限不超過年,可近似認為排放的尾氣中濃度﹪與使用年限線性相關(guān),確定的回歸方程,并預(yù)測該型號的汽車使用年排放尾氣中的濃度是使用年的多少倍.

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在ABC內(nèi)的P點處有一服務(wù)站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運動場所. 現(xiàn)已知點P處的服務(wù)站與AC距離為10米,與BC距離為100. 設(shè)米,試問取何值時,運動場所面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記拋物線的焦點為,點在拋物線上,,斜率為的直線與拋物線交于兩點.

1)求的最小值;

2)若,直線的斜率都存在,且;探究:直線是否過定點,若是,求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,平面平面,相交于點.

1)求證:;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家的精準扶貧極大地激發(fā)了農(nóng)村貧困村民的生產(chǎn)積極性.新春伊始,某村計劃利用2019年國家專項扶貧款120萬元興建兩個扶貧產(chǎn)業(yè):毛驢養(yǎng)殖和蔬菜溫室大棚.建一個養(yǎng)殖場的費用是9萬元,建一個溫室大棚的費用是12萬元.根據(jù)村民意愿,養(yǎng)殖場至少要建3個,溫室大棚至少要建2個,并且由于建設(shè)用地的限制,養(yǎng)殖場的數(shù)量不能超過溫室大棚數(shù)量的2倍,則建養(yǎng)殖場和溫室大棚個數(shù)之和的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)當(dāng)時,求過點(0,1)且和曲線相切的直線方程;

(2)若函數(shù)上有兩個不同的零點,求實致的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在點處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)已知,當(dāng)時,恒成立,求實數(shù)的取值范圍;

(Ⅲ)對于在中的任意一個常數(shù),是否存在正數(shù),使得,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點,圓:,直線與圓交于兩點.

) 求直線的方程;

)求直線的斜率的取值范圍;

(Ⅲ)是否存在過點且垂直平分弦的直線?若存在,求直線斜率的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案