【題目】汽車尾氣中含有一氧化碳,碳?xì)浠衔?/span>等污染物,是環(huán)境污染的主要因素之一,汽車在使用若干年之后排放的尾氣之中的污染物會(huì)出現(xiàn)遞增的現(xiàn)象,所以國(guó)家根據(jù)機(jī)動(dòng)車使用和安全技術(shù)、排放檢驗(yàn)狀況,對(duì)達(dá)到報(bào)廢標(biāo)準(zhǔn)的機(jī)動(dòng)車實(shí)施強(qiáng)制報(bào)廢,某環(huán)境組織為了解公眾對(duì)機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的了解情況,隨機(jī)調(diào)查了人,所得數(shù)據(jù)制成如下列聯(lián)表:
(1)若從這人中任選人,選到了解強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的人的概率為,問(wèn)是否在犯錯(cuò)的概率不超過(guò)5﹪的前提下認(rèn)為“機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”?
(2)該環(huán)保組織從相關(guān)部門獲得某型號(hào)汽車的使用年限與排放的尾氣中濃度的數(shù)據(jù),并制成如圖所示的折線圖,若該型號(hào)汽車的使用年限不超過(guò)年,可近似認(rèn)為排放的尾氣中濃度﹪與使用年限線性相關(guān),確定與的回歸方程,并預(yù)測(cè)該型號(hào)的汽車使用年排放尾氣中的濃度是使用年的多少倍.
附:,
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)可以在犯錯(cuò)的概率不超過(guò)5﹪的前提下認(rèn)為“機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”(2);預(yù)測(cè)該型號(hào)的汽車使用12年排放尾氣中的濃度是使用4年的4.2倍.
【解析】
(1)根據(jù)題意計(jì)算,再利用,計(jì)算出,對(duì)照臨界值得出結(jié)論;(2)由公式計(jì)算出,可得y關(guān)于t的回歸方程,把t=12代入回歸方程中,可預(yù)測(cè)該型號(hào)的汽車使用12年排放尾氣中的濃度,即得。
(1)設(shè)“從100人中任選1人,選到了解機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)的人”為事件,
由已知得,解得,所以,,.
假設(shè):機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別無(wú)關(guān).
由2×2列聯(lián)表可知,的觀測(cè)值,
∴可以在犯錯(cuò)的概率不超過(guò)5﹪的前提下認(rèn)為“機(jī)動(dòng)車強(qiáng)制報(bào)廢標(biāo)準(zhǔn)是否了解與性別有關(guān)”
(2)由折線圖中所給數(shù)據(jù)計(jì)算,得,,
故,,
所以所求回歸方程為.
故預(yù)測(cè)該型號(hào)的汽車使用12年排放尾氣中的濃度為,
因?yàn)槭褂?/span>4年排放尾氣中的濃度為,
所以預(yù)測(cè)該型號(hào)的汽車使用12年排放尾氣中的濃度是使用4年的4.2倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)圖像與軸交于,兩點(diǎn),交直線于,兩點(diǎn),經(jīng)過(guò)三點(diǎn),,作圓.
(1)求證:當(dāng)變化時(shí),圓的圓心在一條定直線上;
(2)求證:圓經(jīng)過(guò)除原點(diǎn)外的一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以內(nèi)的素?cái)?shù)的個(gè)數(shù)為_(kāi)________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市委積極響應(yīng)十九大報(bào)告提出的“到2020年全面建成小康社會(huì)”的目標(biāo),鼓勵(lì)各縣積極脫貧,計(jì)劃表彰在農(nóng)村脫貧攻堅(jiān)戰(zhàn)中的杰出村代表,已知A,B兩個(gè)貧困縣各有15名村代表,最終A縣有5人表現(xiàn)突出,B縣有3人表現(xiàn)突出,現(xiàn)分別從A,B兩個(gè)縣的15人中各選1人,已知有人表現(xiàn)突出,則B縣選取的人表現(xiàn)不突出的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行優(yōu)惠促銷活動(dòng),顧客僅可以從以下兩種優(yōu)惠方案中選擇一種,
方案一:每滿200元減50元;
方案二:每滿200元可抽獎(jiǎng)一次.具體規(guī)則是依次從裝有3個(gè)紅球、l個(gè)白球的甲箱,裝有2個(gè)紅球、2個(gè)白球的乙箱,以及裝有1個(gè)紅球、3個(gè)白球的丙箱中各隨機(jī)摸出1個(gè)球,所得結(jié)果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個(gè)數(shù) | 3 | 2 | 1 | 0 |
實(shí)際付款 | 半價(jià) | 7折 | 8折 | 原價(jià) |
(1)若兩個(gè)顧客都選擇方案二,各抽獎(jiǎng)一次,求至少一個(gè)人獲得半價(jià)優(yōu)惠的概率;
(2)若某顧客購(gòu)物金額為320元,用所學(xué)概率知識(shí)比較哪一種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大;
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2.0)為其右焦點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在平行于OA的直線L,使得直線L與橢圓C有公共點(diǎn),且直線OA與L的距離等于4?若存在,求出直線L的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a-)x2-2ax+lnx,a∈R
(1)當(dāng)a=1時(shí),求f(x)在區(qū)間[1,e]上的最大值和最小值;
(2)求g(x)=f(x)+ax在x=1處的切線方程;
(3)若在區(qū)間(1,+∞)上,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,點(diǎn)B在雙曲線的右支上,矩形OFBD與矩形AEGF相似,且矩形OFBD與矩形AEGF的面積之比為2:1,則該雙曲線的離心率為
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com