【題目】已知數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)在y=x2的函數(shù)圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=(-1)n+1anan+1,求數(shù)列{bn}的前100項和T100.
【答案】(1)an=2n-1(2)-20200
【解析】
(1)點(n,Sn)(n∈N*)在y=x2的函數(shù)圖象上.Sn=n2,可得:n≥2時,an=Sn-Sn-1.n=1時,a1=1.即可得出..
(2)bn=(-1)n+1anan+1,可得b2n-1+b2n=a2n-1a2n-a2na2n+1=-4(4n-1).利用等差數(shù)列的求和公式即可得出.
(1)點(n,Sn)(n∈N*)在y=x2的函數(shù)圖象上.
∴Sn=n2,
可得:n≥2時,an=Sn﹣Sn﹣1=n2﹣(n﹣1)2=2n﹣1.
n=1時,a1=1.
可得:an=2n﹣1.
(2)bn=(﹣1)n+1anan+1,
∴b2n﹣1+b2n=a2n﹣1a2n﹣a2na2n+1=(4n﹣1)(4n﹣3﹣4n﹣1)=﹣4(4n﹣1).
∴數(shù)列{bn}的前100項和T100=﹣420200.
科目:高中數(shù)學 來源: 題型:
【題目】“荊、荊、襄、宜七校聯(lián)考”正在如期開展,組委會為了解各所學校學生的學情,欲從四地選取200人作樣本開展調研.若來自荊州地區(qū)的考生有1000人,荊門地區(qū)的考生有2000人,襄陽地區(qū)的考生有3000人,宜昌地區(qū)的考生有2000人.為保證調研結果相對準確,下列判斷正確的有( 。
①用分層抽樣的方法分別抽取荊州地區(qū)學生25人、荊門地區(qū)學生50人、襄陽地區(qū)學生75人、宜昌地區(qū)學生50人;
②可采用簡單隨機抽樣的方法從所有考生中選出200人開展調研;
③宜昌地區(qū)學生小劉被選中的概率為;
④襄陽地區(qū)學生小張被選中的概率為.
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在道路邊安裝路燈,路面寬,燈柱高14,燈桿與地面所成角為30°.路燈采用錐形燈罩,燈罩軸線與燈桿垂直,軸線,燈桿都在燈柱和路面寬線確定的平面內.
(1)當燈桿長度為多少時,燈罩軸線正好通過路面的中線?
(2)如果燈罩軸線AC正好通過路面的中線,此時有一高2.5 的警示牌直立在處,求警示牌在該路燈燈光下的影子長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經過點,離心率.
(1)求的方程;
(2)設直線經過點且與相交于兩點(異于點),記直線的斜率為,直線的斜率為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,離心率.
(I)求橢圓C的標準方程;
(II)已知直線交橢圓C于A,B兩點.
①若直線經過橢圓C的左焦點F,交y軸于點P,且滿足.求證:為定值;
②若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】總體由編號為01,02,03,,49,50的50個個體組成,利用隨機數(shù)表(以下選取了隨機數(shù)表中的第1行和第2行)選取5個個體,選取方法是從隨機數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個個體的編號為( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線與E交于A、B兩點,且,其中O為原點.
(1)求拋物線E的方程;
(2)點C坐標為,記直線CA、CB的斜率分別為,證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的一個焦點與拋物線的焦點重合,且過點.過點的直線交橢圓于, 兩點, 為橢圓的左頂點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求面積的最大值,并求此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com