正三棱柱中,,,D、E分別是、的中點,

(1)求證:面⊥面BCD;
(2)求直線與平面BCD所成的角.
(1)見解析;(2).

試題分析:(1)易證⊥面,可得面⊥面;
(2)面,過A作于點O,則于O,連接BO,即為所求二面角的一個平面角,
(1)在正三棱柱中,有,所以,可得面⊥面;
(2)面于DF,過A作AO⊥DF于點O,則AO⊥面BCD于O,連接BO,即為所求二面角的一個平面角,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的底面是邊長為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長是,D是AC的中點.
 
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)求直線AB1與平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐A—BCC1B1中,等邊三角形ABC所在平面與正方形BCC1B1所在平面互相垂直,D為CC1的中點.

(1)求證:BD⊥AB1;
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱是直棱柱,.點分別為的中點.

(1)求證:平面;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知四棱錐P-ABCD,底面ABCD是,邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.

(1)證明:DN//平面PMB;
(2)證明:平面PMB平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題正確的是(  )
A.若兩條直線和同一個平面所成的角相等,則這兩條直線平行
B.若一個平面內(nèi)有三個點到另一個平面的距離相等,則這兩個平面平行
C.若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行
D.若兩個平面都垂直于第三個平面,則這兩個平面平行

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體AC1中,若點P在對角線AC1上,且P點到三條棱CD 、A1D1、 BB1的距離都相等,則這樣的點共有  (   )
A.1 個        B.2 個      C.3 個         D.無窮多個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為,M,N分別是AC,BC的中點,則EM,AN所成角的余弦值等于________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知m,n是兩條不同直線,是兩個不同平面,以下命題正確的是(   )
A.若
B.若
C.若
D.若

查看答案和解析>>

同步練習冊答案