【題目】坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,又在直角坐標系中,曲線的參數(shù)方程為t為參數(shù)).

1)求曲線的直角坐標方程和曲線的普通方程;

2)已知點在曲線上,點Q在曲線上,若的最小值為,求此時點的直角坐標.

【答案】1;(2.

【解析】

1)利用將曲線的極坐標方程轉(zhuǎn)化為直角坐標方程;消除曲線的參數(shù)方程為t為參數(shù))中的參數(shù)即可得到曲線的普通方程;

(2)利用橢圓的參數(shù)方程設(shè)P的坐標,根據(jù)點到直線距離求得的最小值列等式即可解得.

1)由

代入

,

故曲線的直角坐標方程為

∵曲線的參數(shù)方程為(為參數(shù)),

的普通方程為;

2)由題意,曲線的參數(shù)方程為(為參數(shù))

可設(shè)點的直角坐標為

∵曲線是直線,

的值大于等于點到直線的距離,

到直線的距離

∴當,的最小值為

,

此時,點的直角坐標為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】中,,.已知分別是的中點.沿折起,使的位置且二面角的大小是60°,連接,如圖:

1)證明:平面平面

2)求平面與平面所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.

1)求直線的參數(shù)方程和曲線的普通方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,底面為矩形,,,,、分別為線段上一點,且,.

(1)證明:;

(2)證明:平面,并求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角中,為直角,,分別為,的中點,將沿折起,使點到達點的位置,連接,的中點.

(Ⅰ)證明:;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在梯形ABCD中,AB//CDAB=3,CD=6,過AB分別作CD的垂線,垂足分別為E,F,已知DE=1,AE=3,將梯形ABCD沿AE,BF同側(cè)折起,使得平面ADE⊥平面ABFE,平面ADE∥平面BCF,得到圖2.

1)證明:BE//平面ACD;

2)求三棱錐CAED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201611日全面實施二孩政策以來,為了了解生二孩意愿與年齡段是否有關(guān),某市選取“75“80兩個年齡段的已婚婦女作為調(diào)查對象,進行了問卷調(diào)查,共調(diào)查了40“80,40“75,其中調(diào)查的“8010名不愿意生二孩,其余的全部愿意生二孩;調(diào)查的“755人不愿意生二孩,其余的全部愿意生二孩.

1)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表;

年齡段

不愿意

愿意

合計

“80

“75

合計

2)根據(jù)列聯(lián)表,能否在犯錯誤的概率不超過005的前提下,認為生二孩意愿與年齡段有關(guān)?請說明理由.

參考公式:(其中

附表:

050

040

025

015

010

005

0025

0010

0005

0001

0455

0708

1323

2072

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,均為正三角形,在三棱錐P-ABC中:

1)證明:平面平面ABC;

2)若點M在棱PA上運動,當直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.

查看答案和解析>>

同步練習冊答案