A. | $(-∞,-1)∪(\frac{1}{3},+∞)$ | B. | $(-1,\frac{1}{3})$ | C. | $(-∞,\frac{1}{3})∪(1,+∞)$ | D. | $(\frac{1}{3},1)$ |
分析 根據(jù)函數(shù)的表達式可知函數(shù)f(x)為偶函數(shù),判斷函數(shù)在x大于零的單調性為遞增,根據(jù)偶函數(shù)關于原點對稱可知,距離原點越遠的點,函數(shù)值越大,可得|2x|>|x-1|,解絕對值不等式即可.
解答 解:函數(shù)$f(x)=ln(1+|x|)-\frac{1}{{1+{x^2}}}$,定義域為R,
∵f(-x)=f(x),
∴函數(shù)f(x)為偶函數(shù),
當x>0時,函數(shù)$f(x)=ln(1+|x|)-\frac{1}{{1+{x^2}}}$單調遞增,
根據(jù)偶函數(shù)性質可知:得f(2x)>f(x-1)成立,
∴|2x|>|x-1|,
∴4x2>(x-1)2,∴(3x-1)(x+1)>0
∴x的范圍為$(-∞,-1)∪(\frac{1}{3},+∞)$,
故選:A.
點評 考查了偶函數(shù)的性質和利用偶函數(shù)圖象的特點解決實際問題,屬于基礎題型,應牢記.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$) | B. | ($\frac{1}{2e}$,$\frac{1}{e}$] | C. | (0,$\frac{1}{{e}^{2}}$) | D. | ($\frac{1}{e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-1) | C. | (-1,1) | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | $\frac{π}{3}$ | $\frac{5π}{6}$ | |||
Asin(ωx+φ) | 0 | $\sqrt{2}$ | -$\sqrt{2}$ | 0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com