【題目】已知數(shù)列{an}滿(mǎn)足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn3n}的前n項(xiàng)和Sn

【答案】
(1)解:∵(an+1﹣1)(an﹣1)=3(an﹣an+1)=3[(an﹣1)﹣(an+1﹣1)],

= ,即bn+1﹣bn=

∴數(shù)列{bn}是等差數(shù)列,首項(xiàng)為1,公差為

∴bn=1+ (n﹣1)=


(2)解: =(n+2)3n1

∴數(shù)列{bn3n}的前n項(xiàng)和Sn=3+4×3+5×32+…+(n+2)3n1

∴3Sn=3×3+4×32+…+(n+1)×3n1+(n+2)3n,

∴﹣2Sn=3+3+32+…+3n1﹣+(n+2)3n=2+ ﹣(n+2)3n=2+

∴Sn=


【解析】(1)由(an+1﹣1)(an﹣1)=3(an﹣an+1)=3[(an﹣1)﹣(an+1﹣1)],可得 = ,即bn+1﹣bn= .利用等差數(shù)列的通項(xiàng)公式即可得出.(2) =(n+2)3n1 . 利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:方程 表示焦點(diǎn)在x軸上的橢圓,命題q:方程(k﹣1)x2+(k﹣3)y2=1表示雙曲線(xiàn).若p∨q為真,p∧q為假,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行程序框圖,如果輸入的N的值為7,那么輸出的p的值是(
A.120
B.720
C.1440
D.5040

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知△ABC的頂點(diǎn)A(5,1),B(1,5).
(1)若A為直角△ABC的直角頂點(diǎn),且頂點(diǎn)C在y軸上,求BC邊所在直線(xiàn)方程;
(2)若等腰△ABC的底邊為BC,且C為直線(xiàn)l:y=2x+3上一點(diǎn),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(
A.[1,4]
B.[1,4)
C.(1,2)
D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個(gè)不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍為(
A.(﹣1,+∞)
B.(﹣1,1)
C.(﹣∞,1)
D.[﹣1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在區(qū)間D上的函數(shù)f(x),如果滿(mǎn)足:對(duì)任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱(chēng)f(x)是區(qū)間D上有界函數(shù),其中M稱(chēng)為f(x)上的一個(gè)上界,已知函數(shù)g(x)=log 為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[ , ]上的所有上界構(gòu)成的集合;
(2)若g(1﹣m)+g(1﹣m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿(mǎn)足x2﹣4ax+3a2<0(a>0),命題q:實(shí)數(shù)x滿(mǎn)足 ≤0。
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.
(Ⅰ)求異面直線(xiàn)PA與CD所成的角的大;
(Ⅱ)求證:BE⊥平面PCD;
(Ⅲ)求二面角A﹣PD﹣B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案