【題目】已知數(shù)列{an}的前n項和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.
【答案】
(1)解:∵Sn=n2+n,
當n=1時,a1=S1=2;
當n>1時,an=Sn﹣Sn﹣1=n2+n﹣[(n﹣1)2+(n﹣1)]=2n,
綜上所述,數(shù)列{an}的通項公式為an=2n.
(2)證明:由(1)得bn=3an=32n=9n.
∴ = =9為常數(shù).
則數(shù)列{bn}是以9為首項,9為公比的等比數(shù)列.
【解析】(1)利用遞推關系即可得出.(2)利用等比數(shù)列的定義即可證明.
【考點精析】關于本題考查的等比數(shù)列的通項公式(及其變式)和數(shù)列的通項公式,需要了解通項公式:;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AC⊥BC,AB⊥BB1 , AC=BC=BB1 , D為AB的中點,且CD⊥DA1 .
(1)求證:BC1∥平面DCA1;
(2)求BC1與平面ABB1A1所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017安徽淮北二!選修4—4:坐標系與參數(shù)方程
在直角坐標系中, 以為極點, 軸正半軸為極軸建立極坐標系, 圓的極坐標方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點。
(Ⅰ)求圓心的極坐標;
(Ⅱ)直線與軸的交點為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是各項都為正數(shù)的等比數(shù)列,其前n項和為Sn , 且S2=3,S4=15.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}是等差數(shù)列,且b3=a3 , b5=a5 , 試求數(shù)列{bn}的前n項和Mn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos( x+ )的對稱軸x= +kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移 個單位,得到y(tǒng)=sin(2x+ )的圖象.
其中正確的命題的序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com