【題目】【2017安徽淮北二!選修4—4:坐標系與參數(shù)方程
在直角坐標系中, 以為極點, 軸正半軸為極軸建立極坐標系, 圓的極坐標方程為,直線的參數(shù)方程為 (t為參數(shù)), 直線和圓交于兩點。
(Ⅰ)求圓心的極坐標;
(Ⅱ)直線與軸的交點為,求.
科目:高中數(shù)學 來源: 題型:
【題目】【2017鎮(zhèn)江一模】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,
斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,所在位
置分別記為點.
(1)若甲乙都以每分鐘的速度從點出發(fā)在各自的大道上奔走,到大道的另一端
時即停,乙比甲遲分鐘出發(fā),當乙出發(fā)分鐘后,求此時甲乙兩人之間的距離;
(2)設,乙丙之間的距離是甲乙之間距離的倍,且,請將甲
乙之間的距離表示為的函數(shù),并求甲乙之間的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面坐標系內(nèi),O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為 .
(Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2017江西南昌十所重點二!選修4—4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2: .
(Ⅰ)求曲線C1和C2的直角坐標方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;
(Ⅲ)設是曲線C1上任意一點,請直接寫出a + 2b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為,且Sn=n2+n,
(1)求數(shù)列{an}的通項公式;
(2)令bn=3an , 求證:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1:y=cos x,C2:y=sin (2x+),則下面結論正確的是
A. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
B. 把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
C. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2
D. 把C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com