【題目】的內(nèi)角、、的對邊分別為、、,若,,且,則下列選項不一定成立的是( )
A.B.的周長為
C.的面積為D.的外接圓半徑為
【答案】A
【解析】
根據(jù)所給三角函數(shù)式,結(jié)合誘導公式、正弦二倍角公式及正弦和角差角公式化簡,可得或.分類討論,即可分別求得兩種情況下的角度和邊長,依次判斷四個選項即可.
中滿足,由誘導公式及二倍角公式化簡可得
由正弦和角公式與差角公式展開化簡可得
即
則或
所以或
由題意,
對于A,當時,由正弦定理可得;當時,,則,此時,所以A不一定正確;
對于B,當時,即.由余弦定理,代入可解得,所以周長為;當時,,則,此時,,所以周長為.由以上可知,所以B正確;
對于C,由B可知,當時,;當時,,所以C正確;
對于D,當時,由正弦定理可得,則;當時,外接圓半徑為斜邊的一半,即,由以上可知,D為正確選項.
綜上可知,A為選項
故選:A
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點,離心率為.過原點的直線與橢圓有兩個不同的交點.
(1)求橢圓長半軸長;
(2)求最大值;
(3)若直線分別與軸交于點,求證:的面積與的面積的乘積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的準線l經(jīng)過橢圓的左焦點,且l與橢圓交于A,B兩點,過橢圓N右焦點的直線交拋物線M于C,D兩點,交橢圓于G,H兩點,且面積為3.
(1)求橢圓N的方程;
(2)當時,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“斗拱”是中國古代建筑中特有的構(gòu)件,從最初的承重作用,到明清時期集承重與裝飾作用于一體。在立柱頂、額枋和檐檁間或構(gòu)架間,從枋上加的一層層探出成弓形的承重結(jié)構(gòu)叫拱,拱與拱之間墊的方形木塊叫斗。如圖所示,是“散斗”(又名“三才升”)的三視圖,則它的體積為( )
A. B. C. 53 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點的個數(shù);
(3)當時,設(shè)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的焦點和上項點分別為,我們稱為橢圓的“特征三角形”.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比. 若橢圓,直線
已知橢圓與橢圓是相似橢圓,求的值及橢圓與橢圓相似比;
求點到橢圓上點的最大距離;
如圖,設(shè)直線與橢圓相交于兩點,與橢圓交于兩點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學?萍夹〗M在計算機上模擬航天器變軌返回試驗,設(shè)計方案如圖:航天器運行(按順時針方向)的軌跡方程為,變軌(即航天器運行軌跡由橢圓變?yōu)閽佄锞)后返回的軌跡是以軸為對稱軸、為頂點的拋物線的實線部分,降落點為.觀測點、同時跟蹤航天器.
(1)求航天器變軌后的運行軌跡所在的曲線方程;
(2)試問:當航天器在軸上方時,觀測點、測得離航天器的距離分別為多少時,應(yīng)向航天器發(fā)出變軌指令?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“霧霾治理”“延遲退休”“里約奧運”“量子衛(wèi)星”“神舟十一號”成為現(xiàn)在社會關(guān)注的個熱點.小王想利用暑假時間調(diào)查一下社會公眾對這些熱點的關(guān)注度.若小王準備按照順序分別調(diào)査其中的個熱點,則“量子衛(wèi)星”作為其中的一個調(diào)查熱點,但不作為第一個調(diào)查熱點的種數(shù)為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com