【題目】設(shè),。
(1)求的單調(diào)區(qū)間;
(2)討論零點(diǎn)的個(gè)數(shù);
(3)當(dāng)時(shí),設(shè)恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1) 的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為。(2)見解析;(3)
【解析】
(1)直接對(duì)原函數(shù)求導(dǎo),令導(dǎo)數(shù)大于0,解得增區(qū)間,令導(dǎo)數(shù)小于0,解得減區(qū)間;
(2)先判斷是f(x)的一個(gè)零點(diǎn),當(dāng)時(shí),由f(x)=0得,,對(duì)函數(shù)求導(dǎo)得的大致圖像,分析y=a與交點(diǎn)的個(gè)數(shù)可得到函數(shù)f(x)的零點(diǎn)個(gè)數(shù).
(3)不等式恒成立轉(zhuǎn)化為函數(shù)的最值問題,通過變形構(gòu)造出函數(shù)h(x)=f(x)-ag(x),通過研究該函數(shù)的單調(diào)性與極值,進(jìn)而轉(zhuǎn)化為該函數(shù)的最小值大于等于0恒成立,求得a即可.
(1),
當(dāng)時(shí),,遞增,當(dāng)時(shí),,g(x)遞減,
故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)是f(x)的一個(gè)零點(diǎn),當(dāng)時(shí),由f(x)=0得,,
,
當(dāng)時(shí),遞減且,
當(dāng)時(shí),,且時(shí),遞減,
時(shí),遞增,故,,
大致圖像如圖,
∴當(dāng)時(shí),f(x)有1個(gè)零點(diǎn);
當(dāng)a=e或時(shí),f(x)有2個(gè)零點(diǎn);;
當(dāng)時(shí), 有3個(gè)零點(diǎn).
(3)h(x)=f(x)-ag(x)=x,
,
設(shè)的根為,即有
,可得,時(shí),,遞減,
當(dāng)時(shí),,遞增,
,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓C:的右焦點(diǎn)為F,過點(diǎn)F的直線l與橢圓交于A、B兩點(diǎn),直線n:x=4與x軸相交于點(diǎn)E,點(diǎn)M在直線n上,且滿足BM∥x軸.
(1)當(dāng)直線l與x軸垂直時(shí),求直線AM的方程;
(2)證明:直線AM經(jīng)過線段EF的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢:()過點(diǎn),且橢圓的離心率為.過橢圓左焦點(diǎn)且斜率為1的直線與橢圓交于,兩點(diǎn).
(1)求橢圓的方程;
(2)求線段的垂直平分線的方程;
(3)求三角形的面積.(為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的內(nèi)角、、的對(duì)邊分別為、、,若,,且,則下列選項(xiàng)不一定成立的是( )
A.B.的周長(zhǎng)為
C.的面積為D.的外接圓半徑為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點(diǎn)和點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于不同的兩點(diǎn), ,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程;
(2)函數(shù)在區(qū)間上有零點(diǎn),求的值;
(3)若不等式對(duì)任意正實(shí)數(shù)恒成立,求正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,直線與軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com