如圖,已知斜三棱柱(側(cè)棱不垂直于底面)ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,數(shù)學(xué)公式,數(shù)學(xué)公式
(Ⅰ) 設(shè)AC的中點(diǎn)為D,證明A1D⊥底面ABC;
(Ⅱ) 求異面直線(xiàn)A1C與AB成角的余弦值.

(Ⅰ)證明:∵AC=2,AA1=A1C=,∴AC2=AA12+A1C2
∴△AA1C是等腰直角三角形,
又D是斜邊AC的中點(diǎn),∴A1D⊥AC,
∵平面A1ACC1⊥平面ABC,∴A1D⊥底面ABC;
(Ⅱ)∵BC=2,AC=2,AB=2,AC2=AB2+BC2,
∴三角形ABC是直角三角形,過(guò)B作AC的垂線(xiàn)BE,垂足為E,
則BE===,EC===,
∴DE=CD-EC=-=,
以D為原點(diǎn),A1D所在直線(xiàn)為x軸,DC所在直線(xiàn)為y軸,平行于BE的直線(xiàn)為x軸,建立空間直角坐標(biāo)系,如圖所示:

則A(0,-,0),A1(0,0,),B(,,0),C(0,,0),
=(0,,-),=(,,0),
所以cos<>==,
故所求余弦值為
分析:(Ⅰ)利用平面A1ACC1⊥平面ABC,可證A1D⊥底面ABC;
(Ⅱ)過(guò)B作AC的垂線(xiàn)BE,垂足為E,以D為原點(diǎn),A1D所在直線(xiàn)為x軸,DC所在直線(xiàn)為y軸,平行于BE的直線(xiàn)為x軸,建立空間直角坐標(biāo)系,通過(guò)計(jì)算求出向量,的坐標(biāo),利用向量的夾角公式即可求得.
點(diǎn)評(píng):本題考查空間中直線(xiàn)與平面所成的角、異面直線(xiàn)所成的角,考查空間向量在立體幾何中的應(yīng)用,考查學(xué)生的計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(甲)如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成的角的大小;
(2)求側(cè)面A1B與底面所成二面角的大小;
(3)求點(diǎn)C到側(cè)面A1B的距離.
(乙)在棱長(zhǎng)為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A'F⊥C'E;
(2)當(dāng)三棱錐B'-BEF的體積取得最大值時(shí),求二面角B'-EF-B的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,AB=AC,D為BC的中點(diǎn).
(1)若平面ABC⊥平面BCC1B1,求證:AD⊥DC1;
(2)求證:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱(側(cè)棱不垂直于底面)ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,BC=2,AC=2
3
,AB=2
2
AA1=A1C=
6

(Ⅰ) 設(shè)AC的中點(diǎn)為D,證明A1D⊥底面ABC;
(Ⅱ) 求異面直線(xiàn)A1C與AB成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰為AC的中點(diǎn)D,且BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求多面體B1C1ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面邊長(zhǎng)分別是AB=AC=10cm,BC=12cm,側(cè)棱AA1=13cm,頂點(diǎn)A1與下底面各個(gè)頂點(diǎn)的距離相等,求這個(gè)棱柱的全面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案