【題目】某蔬果經(jīng)銷商銷售某種蔬果,售價為每公斤25元,成本為每公斤15元.銷售宗旨是當(dāng)天進(jìn)貨當(dāng)天銷售.如果當(dāng)天賣不出去,未售出的全部降價以每公斤10元處理完.根據(jù)以往的銷售情況,得到如圖所示的頻率分布直方圖:

(1)根據(jù)頻率分布直方圖計算該種蔬果日需求量的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值代表);

(2)該經(jīng)銷商某天購進(jìn)了250公斤這種蔬果,假設(shè)當(dāng)天的需求量為公斤,利潤為元.求關(guān)于的函數(shù)關(guān)系式,并結(jié)合頻率分布直方圖估計利潤不小于1750元的概率.

【答案】(1)265公斤 (2)0.7

【解析】

1)用頻率分布直方圖的每一個矩形的面積乘以矩形的中點(diǎn)坐標(biāo)求和即為平均值;

(2)討論日需求量與250公斤的關(guān)系,寫出分段函數(shù)再利用頻率分布直方圖求概率即可.

(1)

故該種蔬果日需求量的平均數(shù)為265公斤.

(2)當(dāng)日需求量不低于250公斤時,利潤元,

當(dāng)日需求量低于250公斤時,利潤

所以

得,,

所以

故估計利潤不小于1750元的概率為0.7 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計算).

1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項體育競技比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的中線與中位線相交于,已知旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是

A. 恒有

B. 異面直線不可能垂直

C. 恒有平面⊥平面

D. 動點(diǎn)在平面上的射影在線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)在區(qū)間[1,2]上的最大值;

(2)設(shè)在(0,2)內(nèi)恰有兩個極值點(diǎn),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人射擊,已知甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為

1)兩人各射擊一次,求至少有一人擊中目標(biāo)的概率;

2)若制定規(guī)則如下:兩人輪流射擊,每人至多射擊2次,甲先射,若有人擊中目標(biāo)即停止射擊.

①求乙射擊次數(shù)不超過1次的概率;

②記甲、乙兩人射擊次數(shù)和為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若,求的單調(diào)區(qū)間;

(2)當(dāng)時,記的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個正多邊形的每條邊和對角線恰各染成2018種顏色之一,且所有邊及對角線不全同色.若正多邊形中不存在兩色三角形(即三角形的三邊恰被染成兩種顏色),則稱該多邊形的染色是“和諧的”.求最大的正整數(shù) ,使得存在一個和諧的染色正邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的底面與圓錐的底面都在平面上,且過點(diǎn),又的直徑,垂足為.設(shè)三棱錐的所有棱長都是1,圓錐的底面直徑與母線長也都是1,圓錐的底面直徑與母線長也都是1.求圓錐的頂點(diǎn)到三棱錐的三個側(cè)面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

查看答案和解析>>

同步練習(xí)冊答案