【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學家的統(tǒng)計,人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時間周期分別為23天、28天、33.每個節(jié)律周期又分為高潮期、臨界日和低潮期三個階段.以上三個節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計算).

1)請寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當日小英是否適合參加某項體育競技比賽?

【答案】1)體力節(jié)律函數(shù)為:;情緒節(jié)律函數(shù)為:;節(jié)律函數(shù)為:;(2)處于體力節(jié)律高潮期,情緒節(jié)律低潮期,和智力節(jié)律臨界日,適合參加體育競技比賽

【解析】

1)根據(jù)三角函數(shù)周期直接得到答案.

2)求得,代入函數(shù)分別計算得到答案.

1)小英的體力節(jié)律周期為,故,故,故函數(shù)為:;同理可得情緒節(jié)律函數(shù)為:;智力節(jié)律函數(shù)為:.

2)時間共有:.

時,;;

.

故處于體力節(jié)律高潮期,情緒節(jié)律低潮期,和智力節(jié)律臨界日,適合參加體育競技比賽.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,動點M2t)(.

1)求橢圓的標準方程;

2)求以OM為直徑且截直線所得的弦長為2的圓的方程;

3)設F是橢圓的右焦點,過點FOM的垂線與以OM為直徑的圓交于點N,證明線段ON的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點到直線的距離為.

(1)求拋物線的標準方程;

(2)設點是拋物線上的動點,若以點為圓心的圓在軸上截得的弦長均為4,求證:圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題的敘述錯誤的是(

A. 對于命題p: ,則 .

B. 命題的逆否命題為”.

C. 為假命題,則均為假命題.

D. 的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,,分別是棱,的中點,為棱上一點,平面.

(1)證明:中點;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為振興旅游業(yè),香港計劃向內陸地區(qū)發(fā)行總量為2000萬張的紫荊卡,其中向內陸人士(廣東戶籍除外)發(fā)行的是紫荊金卡(簡稱金卡),向廣東籍人士發(fā)行的是紫荊銀卡(簡稱銀卡).某旅游公司組織了一個有36名內陸游客的旅游團到香港名勝旅游,其中是非廣東籍內陸游客,其余是廣東籍游客.在非廣東新游客中有持金卡,在廣東籍游客中有持銀卡.

(Ⅰ)在該團中隨機采訪3名游客,求恰有1人持金卡且持銀卡者少于2人的概率;

(Ⅱ)在該團的廣東籍游客中隨機采訪3名游客,設其中持銀卡人數(shù)為隨機變量,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸,離心率為,且長軸長是短軸長的倍.

(1)求橢圓的標準方程;

(2)設過橢圓左焦點的直線, 兩點,若對滿足條件的任意直線,不等式 恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費用,需了解年宣傳費x(單位:萬元)對年銷量y(單位:噸)和年利潤(單位:萬元)的影響.對近6宣傳費xi和年銷售量yii=1,2,3,4,5,6)的數(shù)據(jù)做了初步統(tǒng)計,得到如下數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

年宣傳費x(萬元)

38

48

58

68

78

88

年銷售量y(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費x(萬元)與年銷售量y(噸)之間近似滿足關系式yaxba,b>0),即lnyblnx+lna,對上述數(shù)據(jù)作了初步處理,得到相關的值如下表:

75.3

24.6

18.3

101.4

(Ⅰ)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調研,求所選數(shù)據(jù)中至多有一年年銷售量低于20噸的概率.

(Ⅱ)根據(jù)所給數(shù)據(jù),求關于的回歸方程;

(Ⅲ) 若生產(chǎn)該產(chǎn)品的固定成本為200(萬元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬元)(總成本=固定成本+生產(chǎn)成本+年宣傳費),銷售收入為(萬元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),則2019年該公司應該投入多少宣傳費才能使利潤最大?(其中

附:對于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計分別為

查看答案和解析>>

同步練習冊答案