【題目】已知拋物線的焦點(diǎn)到直線的距離為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是拋物線上的動(dòng)點(diǎn),若以點(diǎn)為圓心的圓在軸上截得的弦長(zhǎng)均為4,求證:圓恒過定點(diǎn).

【答案】(1) ;(2)證明見解析.

【解析】試題分析:

(1)由題意可得拋物線的焦點(diǎn)坐標(biāo)為,利用點(diǎn)到直線距離公式得到關(guān)于實(shí)數(shù)p的方程,解方程可得拋物線的標(biāo)準(zhǔn)方程是.

(2)設(shè)圓心的坐標(biāo)為,半徑為,由題意結(jié)合勾股定理有,則圓的標(biāo)準(zhǔn)方程整理變形可得,該方程對(duì)于任意的均成立,則據(jù)此可得圓過一定點(diǎn)為.

試題解析:

(1)由題意, ,焦點(diǎn)坐標(biāo)為,

由點(diǎn)到直線的距離公式,得,

所以拋物線的標(biāo)準(zhǔn)方程是.

(2)設(shè)圓心的坐標(biāo)為,半徑為,圓軸上截得的弦長(zhǎng)為,

所以

的標(biāo)準(zhǔn)方程: ,

化簡(jiǎn)得:

對(duì)于任意的,方程①均成立,

故有: 解得: ,所以,圓過一定點(diǎn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;

(Ⅱ)已知直線與曲線交于, 兩點(diǎn),與軸交于點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)E到點(diǎn)A與點(diǎn)B的直線斜率之積為,點(diǎn)E的軌跡為曲線C

(1)求C的方程;

2)過點(diǎn)D作直線l與曲線C交于 兩點(diǎn),求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, , 中點(diǎn),且平面 .已知.

(1)求直線所成角;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率為80%.現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907

966

191

925

271

932

812

458

569

683

431

257

393

027

556

488

730

113

537

989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃均命中的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)性;

(2)已知,若函數(shù)恒成立,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自出生之日起,人的情緒、體力、智力等心理、生理狀況就呈周期變化,變化由線為.根據(jù)心理學(xué)家的統(tǒng)計(jì),人體節(jié)律分為體力節(jié)律、情緒節(jié)律和智力節(jié)律三種.這些節(jié)律的時(shí)間周期分別為23天、28天、33.每個(gè)節(jié)律周期又分為高潮期、臨界日和低潮期三個(gè)階段.以上三個(gè)節(jié)律周期的半數(shù)為臨界日,這就是說11.5天、14天、16.5天分別為體力節(jié)律、情緒節(jié)律和智力節(jié)律的臨界日.臨界日的前半期為高潮期,后半期為低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天計(jì)算).

1)請(qǐng)寫出小英的體力、情緒和智力節(jié)律曲線的函數(shù);

2)試判斷小英在2019422日三種節(jié)律各處于什么階段,當(dāng)日小英是否適合參加某項(xiàng)體育競(jìng)技比賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(Ⅰ)求的值;

(Ⅱ)寫出函數(shù)的單調(diào)遞減區(qū)間(無需證明) ;

(Ⅲ)若實(shí)數(shù)滿足,則稱的二階不動(dòng)點(diǎn),求函數(shù)的二階不動(dòng)點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案