【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
【答案】(1)直線l的直角坐標(biāo)方程為x-y-2=0;(2)3.
【解析】試題分析:(1)消參得到曲線的普通方程,利用極坐標(biāo)和直角坐標(biāo)方程的互化公式求得直線的直角坐標(biāo)方程;(2)先得到直線的參數(shù)方程,將直線的參數(shù)方程代入到圓的方程,得到關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系、參數(shù)的幾何意義進(jìn)行求解.
試題解析:(1)由曲線C的參數(shù)方程 (α為參數(shù)) (α為參數(shù)),
兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;
由直線l的極坐標(biāo)方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,
即直線l的直角坐標(biāo)方程為x-y-2=0.
(2)由題意可得P(2,0),則直線l的參數(shù)方程為 (t為參數(shù)).
設(shè)A,B兩點對應(yīng)的參數(shù)分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,
將 (t為參數(shù))代入(x-1)2+y2=4,得t2+t-3=0,
則Δ>0,由韋達(dá)定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為, , 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標(biāo),否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)若函數(shù)在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點為,且.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中, , ,點為的中點,點為上一動點.
(I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.
(II)若點為的中點且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com