【題目】已知函數(shù).
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)解不等式
【答案】(1)5;(2).
【解析】試題分析:⑴利用絕對值不等式的性質(zhì),求得函數(shù)的最小值;
⑵方法一:去掉絕對值,寫成分段函數(shù)的形式,然后求解;方法二:作出函數(shù)的圖象,數(shù)形結(jié)合,解不等式
解析:(Ⅰ)因為f(x)=|2x-1|+2|x+2|≥|(2x-1)-2(x+2)|=5,
所以
(Ⅱ)解法一:f(x)=
當(dāng)x<-2時,由-4x-3<8,解得x>-,即-<x<-2;
當(dāng)-2≤x≤時,5<8恒成立,即-2≤x≤;
當(dāng)x>時,由4x+3<8,解得x<,即<x<,
所以原不等式的解集為.
解法二(圖象法):f(x)=
函數(shù)f(x)的圖象如圖所示,
令f(x)=8,解得x=-或x=,
所以不等式f(x)<8的解集為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))
(1)若直線為曲線的一條切線,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上為單調(diào)函數(shù),求實數(shù)的取值范圍;
(3)設(shè),若在定義域上有極值點(極值點是指函數(shù)取得極值時對應(yīng)的自變量的值),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左、右焦點分別為,且與拋物線的焦點重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若過的直線交橢圓于兩點,過的直線交橢圓于兩點,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機的功能逐漸強大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機的時間是否與性別有關(guān),某調(diào)查小組隨機抽取了名男生、名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:
平均每天使用手機超過小時 | 平均每天使用手機不超過小時 | 合計 | |
男生 | |||
女生 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認(rèn)為學(xué)生使用手機的時間長短與性別有關(guān)?
(2)在這名女生中,調(diào)查小組發(fā)現(xiàn)共有人使用國產(chǎn)手機,在這人中,平均每天使用手機不超過小時的共有人.從平均每天使用手機超過小時的女生中任意選取人,求這人中使用非國產(chǎn)手機的人數(shù)的分布列和數(shù)學(xué)期望.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是 (為參數(shù)),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線的普通方程與直線的直角坐標(biāo)方程;
(Ⅱ)已知直線與曲線交于, 兩點,與軸交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , , ,點, 分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求函數(shù)的零點個數(shù);
(2)證明:當(dāng),函數(shù)有最小值,設(shè)的最小值為,求函數(shù)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com