【題目】已知函數(shù) (a<0). (Ⅰ)當a=﹣3時,求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個零點,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面為平行四邊形的四棱錐P﹣ABCD中,PA⊥平面ABCD,且BC=2AB═4,∠ABC=60°,點E是PD的中點.
(1)求證:AC⊥PB;
(2)當二面角E﹣AC﹣D的大小為45°時,求AP的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣k)ex . (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于,四邊形ABCD是正方形.
(1)求證;
(2)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB=BC,D為線段AC的中點.
(1)求證:PA⊥BD.
(2)求證:BD⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三人獨立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為 ,且他們是否破譯出密碼互不影響. (Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個大?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】人口問題是當今世界各國普遍關注的問題.認識人口數(shù)量的變化規(guī)律,可以為有效控制人口增長提供依據(jù).早在1798年,英國經(jīng)濟學家馬爾薩斯(T.R.Malthus,1766—1834)就提出了自然狀態(tài)下的人口增長模型: ,其中x表示經(jīng)過的時間, 表示x=0時的人口,r表示人口的平均增長率.
下表是1950―1959年我國人口數(shù)據(jù)資料:
如果以各年人口增長率的平均值作為我國這一時期的人口增長率,用馬爾薩斯人口增長模型建立我國這一時期的具體人口增長模型,某同學利用圖形計算器進行了如下探究:
由此可得到我國1950―1959年我國這一時期的具體人口增長模型為____________. (精確到0.001)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) f(x)=x﹣ln x﹣2.
(Ⅰ)求函數(shù) f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在區(qū)間(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com