【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,若直線和 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);
(2)求直線的極坐標(biāo)方程及的面積.
【答案】(1),.(2)
【解析】
(1)消參,即可得到曲線C的普通方程,結(jié)合,,得到曲線C的極坐標(biāo)方程,計(jì)算A,B坐標(biāo),即可。(2)結(jié)合,,即可得到直線AB的極坐標(biāo)方程,分別計(jì)算OA,OB的長(zhǎng),結(jié)合三角形面積計(jì)算公式,即可。
解:(1)曲線的參數(shù)方程為(為參數(shù)),
所以消去參數(shù)得曲線的普通方程為,
因?yàn)?/span>,,
代入曲線可得的極坐標(biāo)方程:.
將直線,代入圓的極坐標(biāo)方程可知:,,
故、兩點(diǎn)的極坐標(biāo)為,.
(2)由,得:,,根據(jù)兩點(diǎn)式可知直線的方程為:,
所以的極坐標(biāo)方程為:.
所以的極坐標(biāo)方程為.
可知直線恰好經(jīng)過(guò)圓的圓心,故為直角三角形,且,,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)x千件,需另投入成本為C(x),當(dāng)年產(chǎn)量不足80千件時(shí),C(x)=x2+10x(萬(wàn)元).當(dāng)年產(chǎn)量不小于80千件時(shí),C(x)=51x+-1 450(萬(wàn)元).每件商品售價(jià)為0.05萬(wàn)元.通過(guò)市場(chǎng)分析,該廠生產(chǎn)的商品能全部售完.
(1)寫(xiě)出年利潤(rùn)L(x)(萬(wàn)元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少千件時(shí),該廠在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年開(kāi)始,直播答題突然就火了,在某場(chǎng)活動(dòng)中,最終僅有23人平分100萬(wàn)獎(jiǎng)金,這23人可以說(shuō)是“學(xué)霸”級(jí)的大神.但隨著直播答題的發(fā)展,其模式的可持續(xù)性受到了質(zhì)疑,某網(wǎng)戰(zhàn)隨機(jī)選取500名網(wǎng)民進(jìn)行了調(diào)查,得到的數(shù)據(jù)如下表:
男 | 女 | |
認(rèn)為直播答題模式可持續(xù) | 180 | 140 |
認(rèn)為直播答題模式不可持續(xù) | 120 | 60 |
(1)根據(jù)表格中的數(shù)據(jù),用獨(dú)立性檢驗(yàn)的思維方法判斷是否有97.5%的把握認(rèn)為對(duì)直播答題模式的態(tài)度與性別有關(guān)系?
(2)已知在參與調(diào)查的500人中,有15%曾參加答題游戲瓜分過(guò)獎(jiǎng)金,而男性被調(diào)查者有12%曾參加游戲瓜分過(guò)獎(jiǎng)金,求女性被調(diào)查者參與游戲瓜分過(guò)獎(jiǎng)金的概率.
參考公式:
臨界值表:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與圓相切,圓心的坐標(biāo)為.
(1)求圓的方程;
(2)設(shè)直線與圓沒(méi)有公共點(diǎn),求的取值范圍;
(3)設(shè)直線與圓交于、兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以軸的非負(fù)半軸為極軸,原點(diǎn)為極點(diǎn)建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,若直線和 分別與曲線相交于、兩點(diǎn)(,兩點(diǎn)異于坐標(biāo)原點(diǎn)).
(1)求曲線的普通方程與、兩點(diǎn)的極坐標(biāo);
(2)求直線的極坐標(biāo)方程及的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐中,底面,是邊長(zhǎng)為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的相鄰兩對(duì)稱軸間的距離為,若將的圖像先向左平移個(gè)單位,再向下平移個(gè)單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不等實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答下列問(wèn)題:
(1)求平行于直線3x+4y- 2=0,且與它的距離是1的直線方程;
(2)求垂直于直線x+3y -5=0且與點(diǎn)P( -1,0)的距離是的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),的坐標(biāo)分別為,.直線,相交于點(diǎn),且它們的斜率之積是.記點(diǎn)的軌跡為.
(Ⅰ)求的方程.
(Ⅱ)已知直線,分別交直線于點(diǎn),,軌跡在點(diǎn)處的切線與線段交于點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com