已知角α,β∈(0,
π
2
),且tan(α+β)=-3,sinβ=2sin(2α+β),則α=
π
4
π
4
分析:由題意可得sin[(α+β)-α]=2sin[(α+β)+α],利用兩角和差的正弦公式以及同角三角函數(shù)的基本關(guān)系求出tanα=1,再由角α的范圍求得α的值.
解答:解:∵sinβ=2sin(2α+β),∴sin[(α+β)-α]=2sin[(α+β)+α],
∴sin(α+β)cosα-cos(α+β)sinα=2sin(α+β)cosα+2cos(α+β)sinα,
化簡可得 sin(α+β)cosα=-3cos(α+β)sinα,即 tan(α+β)=-3tanα,
即tan(α+β)=-3,化簡可得tanα=1.
再由角α,β∈(0,
π
2
),可得α=
π
4
,
故答案為
π
4
點(diǎn)評:本題主要考查兩角和差的正弦公式的應(yīng)用,同角三角函數(shù)的基本關(guān)系,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知角α滿足sinα+cosα>0,tanα-sinα<0,則角α的范圍可能是( �。�
A.(0,
π
4
B.(
π
4
,
π
2
C.(
π
2
,
4
D.(
4
,π?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市瑞安中學(xué)高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知角α滿足sinα+cosα>0,tanα-sinα<0,則角α的范圍可能是( )
A.(0,
B.(,
C.(,
D.(,π?)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市宏升高復(fù)學(xué)校高三第二次月考試數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知角α滿足sinα+cosα>0,tanα-sinα<0,則角α的范圍可能是( )
A.(0,
B.(,
C.(
D.(,π?)

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�