【題目】已知橢圓 的離心率,過(guò)點(diǎn)、分別作兩平行直線, 與橢圓相交于兩點(diǎn), 與橢圓相交于兩點(diǎn),且當(dāng)直線過(guò)右焦點(diǎn)和上頂點(diǎn)時(shí),四邊形的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若四邊形是菱形,求正數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)由題意布列a,b的方程組,解之即可;(2)依題意可以分別設(shè)的方程為: ,由橢圓的對(duì)稱性得: ,所以是平行四邊形,所以是菱形,等價(jià)于,即,聯(lián)立方程,由韋達(dá)定理及垂直關(guān)系可得: ,結(jié)合條件建立m,k的不等關(guān)系,即可得到正數(shù)的取值范圍.

試題解析:

(Ⅰ),橢圓方程可以化為,

直線過(guò)右焦點(diǎn)和上頂點(diǎn)時(shí),方程可以設(shè)為,聯(lián)立得:

,所以四邊形的面積為,

所以橢圓方程為:

(Ⅱ)依題意可以分別設(shè)的方程為: ,由橢圓的對(duì)稱性得: ,所以是平行四邊形,所以是菱形,等價(jià)于,即,

將直線的方程代入橢圓方程得到: ,

,

設(shè),由,

得到:

從而: ,化簡(jiǎn)得: ,

所以解得,

所以正數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),函數(shù)恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的值;

2)當(dāng)時(shí),

若對(duì)于任意,恒有,求的取值范圍;

,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣(mài)相.某大型超市進(jìn)行扶貧工作,按計(jì)劃每年六月從精準(zhǔn)扶貧戶中訂購(gòu)荔枝,每天進(jìn)貨量相同且每公斤20元,售價(jià)為每公斤24元,未售完的荔枝降價(jià)處理,以每公斤16元的價(jià)格當(dāng)天全部處理完.根據(jù)往年情況,每天需求量與當(dāng)天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購(gòu)數(shù)量,統(tǒng)計(jì)了前三年6月1日到30日各天的平均氣溫?cái)?shù)據(jù),得到如圖所示的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(Ⅰ)假設(shè)該商場(chǎng)在這90天內(nèi)每天進(jìn)貨100公斤,求這90天荔枝每天為該商場(chǎng)帶來(lái)的平均利潤(rùn)(結(jié)果取整數(shù));

(Ⅱ)若該商場(chǎng)每天進(jìn)貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天該商場(chǎng)不虧損的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),證明:

(3)求證:對(duì)任意的,都有:,(其中為自然對(duì)數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為選拔選手參加“中國(guó)詩(shī)詞大會(huì)”,某中學(xué)舉行一次“詩(shī)詞大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照 , , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中、的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?0分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國(guó)謎語(yǔ)大會(huì)”,設(shè)隨機(jī)變量表示所抽取的2名學(xué)生中得分在內(nèi)的學(xué)生人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,若分別為的中點(diǎn).

)求證:平面;

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】全國(guó)大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國(guó)學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國(guó)最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競(jìng)技平臺(tái).全國(guó)大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國(guó)240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來(lái)自全國(guó)六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國(guó)科大,西安交大等眾多國(guó)內(nèi)頂尖高校,經(jīng)過(guò)嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國(guó)大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).

(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?

(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.

(i)從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團(tuán)隊(duì)中任取兩個(gè)團(tuán)隊(duì),求至少有一個(gè)團(tuán)隊(duì)為144分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過(guò)點(diǎn). 為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).

⑴求橢圓的標(biāo)準(zhǔn)方程;

⑵若,求的值;

⑶設(shè)直線的斜率分別為, ,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家收購(gòu)某種農(nóng)產(chǎn)品的價(jià)格為120/t,其中征稅標(biāo)準(zhǔn)為每100元征收8元(稱稅率為8個(gè)百分點(diǎn)),計(jì)劃可收購(gòu)a萬(wàn)t,為減輕農(nóng)民負(fù)擔(dān),決定降低稅率x個(gè)百分點(diǎn),預(yù)計(jì)收購(gòu)量可增加2x個(gè)百分點(diǎn).

1)寫(xiě)出降低稅率后,稅收y(萬(wàn)元)與x的關(guān)系式;

2)要使此項(xiàng)稅收在稅率調(diào)整后不低于原計(jì)劃的78%,試確定x的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案