若復(fù)數(shù)z滿足z(1+i)=2(i是虛數(shù)單位),則其共軛復(fù)數(shù)
z
=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則、虛數(shù)單位i的冪運(yùn)算性質(zhì)化簡復(fù)數(shù)z,可得其共軛復(fù)數(shù)
z
解答: 解:∵z(1+i)=2,∴z=
2
1+i
=
2(1-i)
(1+i)(1-i)
=
2-2i
2
 1-i,
∴其共軛復(fù)數(shù)
z
=1+i,
故答案為:1+i.
點(diǎn)評:本題主要考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的乘除法法則的應(yīng)用,虛數(shù)單位i的冪運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

a、b是不全為零的實(shí)數(shù),求證3ax2+2bx-(a+b)=0在(0,1)至少有一個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為正方體ABCD-A1B1C1D1對角線BD1上的一點(diǎn),且BP=λBD1(λ∈(0,1)).下面命題正確的為:
 
(寫出所有正確結(jié)論的序號):
①A1D⊥C1P;     
②若BD1⊥平面PAC,則λ=
1
3
;
③若△PAC為鈍角三角形,則λ∈(0,
1
2
);
④若λ∈(0,
1
2
),則△PAC為銳角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知P是圓O外一點(diǎn),PA為 圓O的切線.A為切點(diǎn).割線PBC經(jīng)過圓心O,若PA=3
3
,PC=9,則∠ACP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x2+x
log4(3x-1)
+
34x+2
的定義域?yàn)?div id="akvrn2r" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線S:y=3x-x3的在點(diǎn)A(1,2)的切線的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù).當(dāng)x≥0時(shí),f(x)=
(
1
2
)x,0≤x<2
log16x,x≥2
,若關(guān)于x的方程[f(x)]2+a•f(x)+b=0(a、b∈R)有且只有7個(gè)不同實(shí)數(shù)根,則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察如圖三角形數(shù)陣,則
(1)若記第n行的第m個(gè)數(shù)為anm,則a73=
 

(2)第n(n≥2)行的第2個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
b
a
的相反向量,則下列說法錯(cuò)誤的是( 。
A、
a
b
一定不相等
B、
a
b
C、
a
b
的長度必相等
D、
a
b
的相反向量

查看答案和解析>>

同步練習(xí)冊答案