a、b是不全為零的實數(shù),求證3ax2+2bx-(a+b)=0在(0,1)至少有一個根.
考點:函數(shù)零點的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:可通過構(gòu)造函數(shù)f(x)=ax3+bx2-(a+b)x,由f(0)=f(1)=0,且f(x)是連續(xù)函數(shù),得到在區(qū)間(0,1)內(nèi),f(x)存在極值,從而解決問題.
解答: 解:構(gòu)造函數(shù)f(x)=ax3+bx2-(a+b)x,
∵f(0)=f(1)=0,且f(x)是連續(xù)函數(shù),
∴在區(qū)間(0,1)內(nèi),f(x)存在極值,
∴總存在x=k∈(0,1),使得f′(k)=0,
又f′(x)=3ax2+2bx-(a+b),
∴f′(k)=3ak2+2bk-(a+b)=0,
即x=k是方程3ax2+2bx-(a+b)=0的一個根
∴方程3ax2+2bx-(a+b)=0在(0,1)內(nèi)至少有一個根.
點評:本題考察了函數(shù)的零點問題,滲透了轉(zhuǎn)化思想,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,∠ABC=∠BCD=∠CDA=90°,設(shè)頂點A在底面BCD上的射影為E.
(1)求證:CD⊥面ADE
(2)求證:BC=DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先后擲兩個均勻正方體骰子(六個面分別標(biāo)有點數(shù)1,2,3,4,5,6),骰子朝上的面的點數(shù)分別為X,Y.
問:
(1)X+Y=8的概率是多少?
(2)log2xY=1的概率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x2+x+1)n=D
 
0
n
x2n+D
 
1
n
x2n-1+D
 
2
n
x2n-2+…+D
 
2n-1
n
x+D
 
2n
n
(n∈N)的展開式中,把D
 
0
n
,D
 
1
n
,D
 
2
n
,…,D
 
2n
n
叫做三項式的n次系數(shù)列.
(Ⅰ)例如三項式的1次系數(shù)列是1,1,1,填空:
三項式的2次系數(shù)列是
 
;
三項式的3次系數(shù)列是
 

(Ⅱ)二項式(a+b)n(n∈N)的展開式中,系數(shù)可用楊輝三角形數(shù)陣表示,如下

①當(dāng)0≤n≤4,n∈N時,類似楊輝三角形數(shù)陣表,請列出三項式的n次系數(shù)列的數(shù)陣表;
②由楊輝三角形數(shù)陣表中可得出性質(zhì):C
 
n
n+1
=C
 
n
n
+C
 
n-1
n
,類似的請用三項式的n次系數(shù)表示D
 
k+1
n+1
(1≤k≤2n-1,k∈N)(無須證明);
(Ⅲ)試用二項式系數(shù)(組合數(shù))表示D
 
3
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且a1=0,對任意n∈N*,都有nan+1=Sn+n(n+1).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足an+log2n=log2bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={x∈N+|x<6},A={1,3},B={3,5}.
(1)求∁UA,∁UB;
(2)求A∪B,A∩B;
(3)求∁U(A∪B),(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x+5=0},B={x|2a≤x≤a+3},且B⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式(x+y)(
a
x
+
1
y
)≥4對任意正實數(shù)x,y恒成立,則正實數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z滿足z(1+i)=2(i是虛數(shù)單位),則其共軛復(fù)數(shù)
z
=
 

查看答案和解析>>

同步練習(xí)冊答案