已知定義在R上的偶函數(shù)f(x)滿足f(x-1)=f(x+1),當0≤x≤1時,f(x)=x2,如果函數(shù)g(x)=f(x)-(x+m)有兩個零點,則實數(shù)m的值為( 。
A、2k(k∈Z)
B、2k-
1
4
(k∈Z)
C、2K或2K+
1
4
D、2K或2K-
1
4
(k∈Z)
考點:抽象函數(shù)及其應用,函數(shù)零點的判定定理
專題:計算題,數(shù)形結合,函數(shù)的性質及應用
分析:求出f(x)是以2為最小正周期的函數(shù),由函數(shù)f(x)為偶函數(shù),當0≤x≤1時,f(x)=x2,則當-1≤x≤0時,f(x)=x2,作出函數(shù)y=f(x)和y=x+m的圖象,通過圖象觀察,發(fā)現(xiàn)m為偶數(shù)時,圖象有兩個交點,當直線y=x+m與曲線相切,有兩個零點,即可求出m的值.
解答: 解:f(x)滿足f(x-1)=f(x+1),
則f(x+2)=f(x),
即有f(x)是以2為最小正周期的函數(shù),
函數(shù)f(x)為偶函數(shù),當0≤x≤1時,f(x)=x2
則當-1≤x≤0時,f(x)=x2,
函數(shù)g(x)=f(x)-(x+m)的零點,即
方程g(x)=0的實根.
作出函數(shù)y=f(x)和y=x+m的圖象,
通過圖象觀察,發(fā)現(xiàn)m為偶數(shù)時,圖象有兩個交點,
當直線y=x+m與曲線相切,有兩個零點,
考慮0≤x≤1,設切點為(s,t),則由y′=2x,即有2s=1,解得s=
1
2
,切點為(
1
2
1
4
),
則m=
1
4
-
1
2
=-
1
4
,由f(x)可得當m=2k-
1
4
時,都有兩個交點.
故m=2k或2k-
1
4
(k為整數(shù)),
故選D.
點評:本題考查函數(shù)的性質和運用,考查函數(shù)的奇偶性、周期性及應用,考查數(shù)形結合的思想方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=x(1-
3x
),則f(0)=
 
;f(-8)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
、
b
、
c
滿足|
a
|=|
b
|=3,
a
b
=
3
2
,|
c
-
a
-
b
|=1,則|
c
|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個四面體的三視圖如圖所示,則該四面體的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,1),
b
=(sinα,cosα),且
a
b
,則tanα=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3-ax
a-1
(a≠1).若f(x)在區(qū)間(0,1]上是減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=max{-x+3,3x+1,x2-4x+3}(x∈R),則f(x)min=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=f(x)的導函數(shù)為f′(x),若y=f(x)的圖象在點P(0,f(0))處的切線方程為2x-y+2=0,則f(0)+f′(0)的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
3-2x-1-
1
27
的定義域是
 

查看答案和解析>>

同步練習冊答案