已知函數(shù),
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),若對(duì)任意的兩個(gè)實(shí)數(shù)滿足,總存在,使得成立,證明:
(1) 函數(shù)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,;(2) 實(shí)數(shù)的取值范圍;(3) 詳見解析.

試題分析:(1)若,求函數(shù)的單調(diào)區(qū)間,由于含有對(duì)數(shù)式,可求出導(dǎo)數(shù),在定義域內(nèi)解不等式,即得函數(shù)單調(diào)區(qū)間;(2)恒成立,這是恒成立求參數(shù)范圍,常采用分離常數(shù)法,故本題分離出參數(shù)后變?yōu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034638554716.png" style="vertical-align:middle;" />恒成立,構(gòu)造函數(shù),則問題轉(zhuǎn)化為,利用導(dǎo)數(shù)可求得,從而得實(shí)數(shù)的取值范圍;(3)證明:,由已知,可得,進(jìn)而可變形為,只需證明,設(shè),其中,用導(dǎo)數(shù)可判斷,又,可得結(jié)論.
試題解析:(1)當(dāng)時(shí),函數(shù),

當(dāng)時(shí),,當(dāng)時(shí),1,
則函數(shù)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,.    4分
(2)恒成立,即恒成立,整理得恒成立.
設(shè),則,令,得.當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,因此當(dāng)時(shí),取得最大值1,因而.        8分
(3),
因?yàn)閷?duì)任意的總存在,使得成立,
所以,  即,

.              12分
設(shè),其中,則,因而在區(qū)間(0,1)上單調(diào)遞增,,又
所以,即.         14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的單調(diào)區(qū)間,并證明對(duì)[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)將y=f(x)的圖像向下平移a(a>0)個(gè)單位,同時(shí)將y=g(x)的圖像向上平移b(b>0)個(gè)單位,使它們恰有四個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若,求證:當(dāng)時(shí),;
(2)若在區(qū)間上單調(diào)遞增,試求的取值范圍;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(其中為常數(shù));
(Ⅰ)如果函數(shù)有相同的極值點(diǎn),求的值;
(Ⅱ)設(shè),問是否存在,使得,若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
(Ⅲ)記函數(shù),若函數(shù)有5個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知、都是定義在R上的函數(shù),,,,,則關(guān)于x的方程)有兩個(gè)不同實(shí)根的概率為     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824034950887378.png" style="vertical-align:middle;" />,部分對(duì)應(yīng)值如下表, 的導(dǎo)函數(shù)的圖象如圖所示. 下列關(guān)于的命題:

-1
0
4
5

1
2
2
1

①函數(shù)的極大值點(diǎn)為,
②函數(shù)上是減函數(shù);
③如果當(dāng)時(shí),的最大值是2,那么的最大值為4;
④當(dāng)時(shí),函數(shù)個(gè)零點(diǎn);
⑤函數(shù)的零點(diǎn)個(gè)數(shù)可能為0、1、2、3、4個(gè).
其中正確命題的序號(hào)是                    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2xsin x+cos x.
(1)若曲線yf(x)在點(diǎn)(a,f(a))處與直線yb相切,求ab的值;
(2)若曲線yf(x)與直線yb有兩個(gè)不同交點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的函數(shù)滿足:恒成立,若,則的大小關(guān)系為 ( )
A.B.
C.D.的大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=(x+1)ln x-2x.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案