定義在R上的函數(shù)
滿足:
恒成立,若
,則
與
的大小關系為 ( )
試題分析:令
,則
,由于
,所以
,即
在R上單調(diào)遞增,
,
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
函數(shù)
,其中
為實常數(shù)。
(1)討論
的單調(diào)性;
(2)不等式
在
上恒成立,求實數(shù)
的取值范圍;
(3)若
,設
,
。是否存在實常數(shù)
,既使
又使
對一切
恒成立?若存在,試找出
的一個值,并證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,
.
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)若
恒成立,求實數(shù)
的取值范圍;
(3)設
,若對任意的兩個實數(shù)
滿足
,總存在
,使得
成立,證明:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
.
⑴當
時,①若
的圖象與
的圖象相切于點
,求
及
的值;
②
在
上有解,求
的范圍;
⑵當
時,若
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
,其中
是自然對數(shù)的底數(shù),
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當
時,試確定函數(shù)
的零點個數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設f(x)=
+xln x,g(x)=x
3-x
2-3.
(1)如果存在x
1,x
2∈[0,2]使得g(x
1)-g(x
2)≥M成立,求滿足上述條件的最大整數(shù)M;
(2)如果對于任意的s,t∈
,都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)
f(
x)=
ax2+
bx+
c(
a,
b,
c∈R),若
x=-1為函數(shù)
f(
x)e
x的一個極值點,則下列圖象不可能為
y=
f(
x)的圖象是( ).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=0時,是否存在實數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
f(
x)=
ax+ln
x,
g(
x)=e
x.
(1)當
a≤0時,求
f(
x)的單調(diào)區(qū)間;
(2)若不等式
g(
x)<
有解,求實數(shù)
m的取值范圍.
查看答案和解析>>