【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為

將圓C的參數(shù)方程化為極坐標(biāo)方程;

設(shè)點(diǎn)A的直角坐標(biāo)為,射線l與圓C交于點(diǎn)不同于點(diǎn),求面積的最大值.

【答案】(1);(2)

【解析】

C的參數(shù)方程消去參數(shù),能求出圓C的普通方程,由此能求出圓C的極坐標(biāo)方程;求出,,,分情況討論,當(dāng)時(shí),能求出面積的最大值.

C的參數(shù)方程為:為參數(shù),

C的普通方程為,即,

C的極坐標(biāo)方程為,即

射線l的極坐標(biāo)方程為,射線l與圓C交于點(diǎn)不同于點(diǎn)

,

點(diǎn)A的直角坐標(biāo)為,,

分兩種情況:當(dāng)

,

當(dāng),即時(shí),

面積取最大值

當(dāng),)

=)

=

當(dāng),即時(shí)三角形的面積最大值為: <.此時(shí)也不符合:.

綜上面積的大值為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京地鐵八通線西起四惠站,東至土橋站,全長,共設(shè)13座車站目前八通線執(zhí)行20141228日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)單位:元如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠東

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

span>3

3

4

4

4

4

5

5

5

傳媒大學(xué)

3

3

3

4

4

4

4

5

5

雙橋

3

3

3

4

4

4

4

4

管莊

3

3

3

3

4

4

4

八里橋

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果園

3

3

3

3

九棵樹

3

3

3

梨園

3

3

臨河里

3

土橋

四惠

四惠東

高碑店

傳媒大學(xué)

雙橋

管莊

八里橋

通州北苑

果園

九棵樹

梨園

臨河里

土橋

113座車站中任選兩個(gè)不同的車站,求兩站間票價(jià)為5元的概率;

2在土橋出站口隨機(jī)調(diào)查了n名下車的乘客,將在八通線各站上車情況統(tǒng)計(jì)如下表:

上車站點(diǎn)

通州北苑果園九棵樹

梨園臨河里

雙橋管莊八里橋

四惠四惠東高碑店

傳媒大學(xué)

頻率

a

b

人數(shù)

c

15

25

a,bc,n的值,并計(jì)算這n名乘客乘車平均消費(fèi)金額;

3某人從四惠站上車乘坐八通線到土橋站,中途任選一站出站一次,之后再從該站乘車若想兩次乘車花費(fèi)總金額最少,可以選擇中途哪站下車?寫出一個(gè)即可

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=,,M,N分別是BC,AB的中點(diǎn),將△BMN沿直線MN折起,使二面角B'-MN-B的大小為,則B'N與平面ABC所成角的正切值是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy22px(p0)的焦點(diǎn)F,直線y4y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|2|PQ|

(1)p的值;

(2)已知點(diǎn)T(t,-2)C上一點(diǎn),M,NC上異于點(diǎn)T的兩點(diǎn),且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

①若,,則

②函數(shù),的最小值是3

③用長為的鐵絲圍成--個(gè)平行四邊形,則該平行四邊形能夠被直徑為的圓形紙片完全覆蓋

④已知正實(shí)數(shù),滿足,則的最小值為.

其中所有正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn),軸為正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為 ,直線與曲線相交于兩點(diǎn),直線過定點(diǎn)且傾斜角為交曲線兩點(diǎn).

(1)把曲線化成直角坐標(biāo)方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A{x|x24ax+3a20,a0},B{x|x2x6≥0},若xAxB的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長,“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語言描述:在羨除中,,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二項(xiàng)式 的展開式.

(1)求展開式中含項(xiàng)的系數(shù);

(2)如果第項(xiàng)和第項(xiàng)的二項(xiàng)式系數(shù)相等,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案