【題目】已知拋物線Cy22px(p0)的焦點(diǎn)F,直線y4y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|2|PQ|

(1)p的值;

(2)已知點(diǎn)T(t,-2)C上一點(diǎn),M,NC上異于點(diǎn)T的兩點(diǎn),且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

【答案】1p4 2)證明見(jiàn)解析,定點(diǎn)坐標(biāo):(1,-1)

【解析】

1)設(shè)Q(x0,4),由拋物線定義,根據(jù)|QF|x0,解得x0,將點(diǎn)Q代入拋物線方程,即可求解;

2)設(shè)直線MN的方程為xmyn,代入拋物線的方程,代入y1y2,y1y2,結(jié)合斜率公式,求得nm1,代入直線方程,即可求解.

1)設(shè)Q(x0,4),由拋物線定義,|QF|x0,

|QF|2|PQ|,即2x0x0,解得x0,

將點(diǎn)Q代入拋物線方程,解得p4

2)由(1)C的方程為y28x,所以點(diǎn)T坐標(biāo)為,

設(shè)直線MN的方程為xmyn,點(diǎn)MN,

y28my8n0,所以y1y28m,y1y2=-8n

所以kMTkNT

=-,

解得nm1,所以直線MN方程為x1m(y1),

此時(shí)直線恒過(guò)點(diǎn)(1,-1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將編號(hào)為1、2、3、4的四個(gè)小球隨機(jī)的放入編號(hào)為1、2、3、4的四個(gè)紙箱中,每個(gè)紙箱有且只有一個(gè)小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號(hào)為的紙箱放入的小球編號(hào)為,定義吻合度誤差為

(1) 寫(xiě)出吻合度誤差的可能值集合;

(2) 假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;

(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計(jì)算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨(dú)立);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),e是自然對(duì)數(shù)的底,

(1)討論的單調(diào)性;

(2)若,是函數(shù)的零點(diǎn),的導(dǎo)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,曲線C由部分橢圓C1=1a>b>0,y≥0和部分拋物線C2:y=-x2+1y≤0連接而成,C1與C2的公共點(diǎn)為A,B,其中C1所在橢圓的離心率為

1求a,b的值;

2過(guò)點(diǎn)B的直l與C1,C2分別交于點(diǎn)P,QP,Q,A,B中任意兩點(diǎn)均不重合,若AP⊥AQ,求直線l

的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知項(xiàng)數(shù)為項(xiàng)的有窮數(shù)列,若同時(shí)滿足以下三個(gè)條件:

為正整數(shù);或1,其中,3,;

任取數(shù)列中的兩項(xiàng),,剩下的項(xiàng)中一定存在兩項(xiàng),,滿足,則稱數(shù)列數(shù)列.

若數(shù)列是首項(xiàng)為1,公差為1,項(xiàng)數(shù)為6項(xiàng)的等差數(shù)列,判斷數(shù)列是否是數(shù)列,并說(shuō)明理由.

當(dāng)時(shí),設(shè)數(shù)列中1出現(xiàn)次,2出現(xiàn)次,3出現(xiàn)次,其中,

求證:,;

當(dāng)時(shí),求數(shù)列中項(xiàng)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,居民小區(qū)要建一座八邊形的休閑場(chǎng)所,它的主體造型平面圖是由兩個(gè)相同的矩形構(gòu)成的面積為的十字形地域,計(jì)劃在正方形上建一座花壇,造價(jià)為/;在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)為/;再在四個(gè)空角(圖中四個(gè)三角形,如)上鋪草坪,造價(jià)為/

1)設(shè)總造價(jià)為(單位:元),長(zhǎng)為(單位:),試求出關(guān)于的函數(shù)關(guān)系式,并求出定義域;

2)當(dāng)長(zhǎng)取何值時(shí),總造價(jià)最小,并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為,

將圓C的參數(shù)方程化為極坐標(biāo)方程;

設(shè)點(diǎn)A的直角坐標(biāo)為,射線l與圓C交于點(diǎn)不同于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的焦距為,短半軸的長(zhǎng)為2,過(guò)點(diǎn)P(-2,1)且斜率為1的直線l與橢圓C交于A,B兩點(diǎn)

(1)求橢圓C的方程

(2)求弦AB的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為空間中三條互相平行且兩兩間的距離分別為4、5、6的直線,給出下列三個(gè)結(jié)論:

①存在使得是直角三角形;

②存在使得是等邊三角形;

③三條直線上存在四點(diǎn)使得四面體為在一個(gè)頂點(diǎn)處的三條棱兩兩互相垂直的四面體,其中,所有正確結(jié)論的個(gè)數(shù)是( )

A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案