函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導函數(shù)的最小值為
(1)求,,的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

(Ⅰ),
(Ⅱ)函數(shù)的單調(diào)增區(qū)間是
上的最大值是,最小值是

解析試題分析:(Ⅰ)∵為奇函數(shù),



的最小值為

又直線的斜率為
因此,
,
(Ⅱ)
   ,列表如下:















極大

極小

所以函數(shù)的單調(diào)增區(qū)間是
,,
上的最大值是,最小值是
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知定義在上的函數(shù)(其中).
(Ⅰ)解關于的不等式;
(Ⅱ)若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,函數(shù),若.
(1)求的值并求曲線在點處的切線方程;
(2)設,求上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)若函數(shù)圖像上的點到直線距離的最小值為,求的值;
(2)關于的不等式的解集中的整數(shù)恰有3個,求實數(shù)的取值范圍;
(3)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)
“分界線”.設,試探究是否存在“分界線”?若存在,求出“分界線”的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求在區(qū)間上的最大值;
(2)若函數(shù)在區(qū)間上存在遞減區(qū)間,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


的單調(diào)區(qū)間
, 兩點連線的斜率為,問是否存在常數(shù),且,當時有,當時有;若存在,求出,并證明之,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).        
(Ⅰ)求的最小值;
(Ⅱ)若對所有都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)若存在函數(shù)使得恒成立,則稱的一個“下界函數(shù)”.
(I) 如果函數(shù)為實數(shù)的一個“下界函數(shù)”,求的取值范圍;
(Ⅱ)設函數(shù) 試問函數(shù)是否存在零點,若存在,求出零點個數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案