【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線,的極坐標方程分別為,.
(1)將直線的參數(shù)方程化為極坐標方程,將的極坐標方程化為參數(shù)方程;
(2)當(dāng)時,直線與交于,兩點,與交于,兩點,求.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了進一步提升基層黨員自身理論素養(yǎng),市委組織部舉辦了黨建主題知識競賽(滿分120分),從參加競賽的黨員中采用分層抽樣的方法抽取若干名黨員,統(tǒng)計他們的競賽成績得到下面頻率分布表:
成績/分 | |||||
頻率 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 |
已知成績在區(qū)間內(nèi)的有人.
(1)將成績在內(nèi)的定義為“優(yōu)秀”,在內(nèi)的定義為“良好”,請將列聯(lián)表補充完整.
男黨員 | 女黨員 | 合計 | |
優(yōu)秀 | |||
良好 | 15 | ||
合計 | 25 |
(2)判斷是否有的把握認為競賽成績是否優(yōu)秀與性別有關(guān)?
(3)若在抽取的競賽成績?yōu)閮?yōu)秀的黨員中任意抽取2人進行黨建知識宣講,求被抽取的這兩人成績都在內(nèi)的概率.
附:
| 0.050 | 0.010 | 0.001 |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為6cm,該紙片上的正方形ABCD的中心為O.E,F,G,H為圓O上的點,△ABE,△BCF,△CDG,△ADH分別是以AB,BC,CD,DA為底邊的等腰三角形.沿虛線剪開后,分別以AB,BC,CD,DA為折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合得到一個四棱錐.當(dāng)該四棱錐的側(cè)面積是底面積的2倍時,該四棱錐的外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)f(x)(2x),若f(),θ∈(0,),求tanθ.
(2)若函數(shù)g(x)=﹣(sincos)cos,討論函數(shù)g(x)在區(qū)間[,上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,φ<0)的圖象與y軸的交點為(0,1),它的一個最高點和一個最低點的坐標分別為(x0,2),(x0,﹣2),
(1)若函數(shù)f(x)的最小正周期為π,求函數(shù)f(x)的解析式;
(2)當(dāng)x∈(x0,x0)時,f(x)圖象上有且僅有一個最高點和一個最低點,且關(guān)于x的方程f(x)﹣a=0在區(qū)間[,]上有且僅有一解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為AB、BC的中點,現(xiàn)在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三點重合,重合后的點記為P.
問:(1)這個幾何體是什么?
(2)這個幾何體由幾個面構(gòu)成?每個面的三角形是什么三角形?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列所給4個圖象中,與所給3件事吻合最好的順序為 ( )
(1)我離開家不久,發(fā)現(xiàn)自己把作業(yè)本忘在家里了,于是立刻返回家里取了作業(yè)本再上學(xué);
(2)我出發(fā)后,心情輕松,緩緩行進,后來為了趕時間開始加速;
(3)我騎著車一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時間.
A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com