【題目】二次不等式ax2+bx+1>0的解集為{x|﹣1<x< },則ab的值為(
A.﹣5
B.5
C.﹣6
D.6

【答案】D
【解析】解:∵不等式ax2+bx+1>0的解集為{x|﹣1<x< },
∴a<0,
∴原不等式等價于﹣ax2﹣bx﹣1<0,
由韋達定理知﹣1+ =﹣ ,﹣1×3= ,
∴a=﹣3,b=﹣2,
∴ab=6.
故選D
【考點精析】本題主要考查了解一元二次不等式和基本不等式的相關知識點,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊;基本不等式:,(當且僅當時取到等號);變形公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中, 是等腰直角三角形, ,側棱, 分別為的中點,點在平面上的射影是的重心.

(1)求證: 平面

2)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;

(3)現(xiàn)用分層抽樣的方法從3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為, ,數(shù)列的通項公式為

(1)求數(shù)列的通項公式;

(2)設,數(shù)列的前項和為

①求;

②若,求數(shù)列的最小項的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率等于 .現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產生09之間取整數(shù)值的隨機數(shù),指定1,23,4表示命中,56,7,8,9,0,表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結果.經(jīng)隨機模擬產生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}滿足:a1=1,an+1=3an , n∈N+
(1)求{an}的通項公式及前n項和Sn
(2)已知{bn}是等差數(shù)列,Tn為前n項和,且b1=a2 , b3=a1+a2+a3 , 求T20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了提高產品的年產量,某企業(yè)擬在2013年進行技術改革,經(jīng)調查測算,產品當年的產量x萬件與投入技術改革費用m萬元(m≥0)滿足x=3﹣ (k為常數(shù)).如果不搞技術改革,則該產品當年的產量只能是1萬件.已知2013年生產該產品的固定投入為8萬元,每生產1萬件該產品需要再投入16萬元.由于市場行情較好,廠家生產均能銷售出去,廠家將每件產品的銷售價格定為每件產品生產成本的1.5倍(生產成本包括固定投入和再投入兩部分資金)
(1)試確定k的值,并將2013年該產品的利潤y萬元表示為技術改革費用m萬元的函數(shù)(利潤=銷售金額﹣生產成本﹣技術改革費用);
(2)該企業(yè)2013年的技術改革費用投入多少萬元時,廠家的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}為等差數(shù)列,且a3=﹣6,a6=0.
(1)求{an}的通項公式.
(2)若等比數(shù)列{bn}滿足b1=8,b2=a1+a2+a3 , 求{bn}的前n項和公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】醫(yī)生的專業(yè)能力參數(shù)可有效衡量醫(yī)生的綜合能力,越大,綜合能力越強,并規(guī)定: 能力參數(shù)不少于30稱為合格,不少于50稱為優(yōu)秀.某市衛(wèi)生管理部門隨機抽取300名醫(yī)生進行專業(yè)能力參數(shù)考核,得到如圖所示的能力的頻率分布直方圖:

)求出這個樣本的合格率、優(yōu)秀率;

)現(xiàn)用分層抽樣的方法從中抽出一個樣本容量為20的樣本,再從這20名醫(yī)生中隨機選出2名.

求這2名醫(yī)生的能力參數(shù)為同一組的概率;

設這2名醫(yī)生中能力參數(shù)為優(yōu)秀的人數(shù)為,求隨機變量的分布列和期望.

查看答案和解析>>

同步練習冊答案