已知數(shù)列的前n項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式,并證明是等差數(shù)列;
(2)若,求數(shù)列的前項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的公比為q,且0<q<.
(1)在數(shù)列{an}中是否存在三項(xiàng),使其成等差數(shù)列?說明理由;
(2)若a1=1,且對任意正整數(shù)k,ak-(ak+1+ak+2)仍是該數(shù)列中的某一項(xiàng).
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,試用S2011表示T2011.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a3·a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項(xiàng)公式an.
(2)若數(shù)列{bn}是等差數(shù)列,且bn=,求非零常數(shù)c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式 (2)令,求數(shù)列前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)求a1+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對任意m∈N*,將數(shù)列{an}中落入?yún)^(qū)間(9m,92m)內(nèi)的項(xiàng)的個數(shù)記為bm,求數(shù)列{bm}的前m項(xiàng)和Sm.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知{an}為等差數(shù)列,且a2=-1,a5=8.
(1)求數(shù)列{|an|}的前n項(xiàng)和;
(2)求數(shù)列{2n·an}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
正項(xiàng)數(shù)列的前n項(xiàng)和為,且。
(Ⅰ)證明數(shù)列為等差數(shù)列并求其通項(xiàng)公式;
(2)設(shè),數(shù)列的前n項(xiàng)和為,證明:。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com